Automatización de Procesos Industriales
(REPASO TEORÍA DE CONTROL)
Ingeniero de Organización. Curso 1º

Jose Mari González de Durana
Dpto. I.S.A., EUITI e ITT - UPV/EHU
Vitoria-Gasteiz

Marzo 2002
Indice

1. **Modelos de procesos continuos**
 1.1. Procesos de tiempo contínuo 5
 1.2. La realimentación en los sistemas de control 6
 1.3. Elementos básicos un sistema de control 7
 1.4. Diseño de los sistemas de control 9
 1.4.1. Nociones de estabilidad, rapidez y precisión 9
 1.5. Clasificación de los sistemas de Control 9
 1.6. Modelo de función de transferencia 11
 1.7. Modelo de estado ... 13
 1.8. Linealización ... 13
 1.9. Transformaciones entre modelos 17

2. **Respuesta temporal**
 2.1. Diagramas de bloques 21
 2.2. Grafos de flujo de señal 25
 2.3. Cálculo de la respuesta temporal 28
 2.4. Sistema de primer orden 32
 2.5. Sistema de segundo orden 34
 2.6. Respuesta del modelo de estado 40
 2.6.1. Análisis Modal ... 42

3. **Respuesta de frecuencia**
 3.1. Respuesta de frecuencia 45
 3.2. Respuesta de un sistema a entrada sinusoidal 45
 3.3. Diagramas de Nyquist 47
 3.4. Diagramas de Bode .. 48
 3.5. Trazado por computador 56
 3.6. Criterio de estabilidad de Nyquist 56
 3.7. Márgenes de fase y de ganancia 59

4. **Lugar de las raíces**
 4.1. Fundamento del método 63
 4.2. Reglas básicas del trazado del lugar de las raíces 65
 4.2.1. Trazado del lugar de las raíces por computador 67
 4.3. Ejemplos ... 68
5. Funcionamiento de los sistemas de control
5.1. Especificaciones de funcionamiento
5.2. Análisis del error
5.3. Sensibilidad a las variaciones de los parámetros
5.4. Sensibilidad a las variables perturbadoras
5.5. Indíces de comportamiento de los sistemas
5.6. Estabilidad de los sistemas de control
5.7. Controlabilidad y Observabilidad

6. Sistemas de Tiempo Discreto
6.1. Introducción
6.2. Sistemas de tiempo discreto
6.2.1. Sistemas intrínsecamente discretos
6.2.2. Sistemas controlados por computador
6.3. Sistemas de tiempo continuo muestreados
6.4. Reconstrucción de la señal muestreada
6.4.1. Teorema del muestreo
6.4.2. Teorema de Shannon
6.4.3. El elemento de retención de orden cero (ZOH)
6.4.4. La transformada estrella
6.5. La transformada z
6.5.1. Propiedades y teoremas de la transformada z
6.5.2. Transformadas de algunas funciones elementales
6.5.3. Transformada z de diferencias finitas
6.6. Ecuaciones diferencia y funciones de transferencia en z
6.7. Obtención de la transformada z inversa
6.7.1. Método de integración compleja
6.7.2. Método de la división directa
6.7.3. Método de expansión en fracciones simples
6.8. Método de resolución numérica de la ecuación diferencia
6.9. Modelos matemáticos de los sistemas de tiempo discreto
6.9.1. Filtros digitales
6.9.2. Sistemas continuos muestreados
6.9.3. Modelo de estado de tiempo discreto

7. Sistemas controlados por computador
7.1. Estabilidad en el plano z
7.2. Diseño del controlador digital
7.2.1. Equivalencia al muestreo y retención
7.2.2. Invarianza al impulso
7.2.3. Invarianza al escalón
7.2.4. Integración numérica
7.2.5. Coincidecia de polos y ceros
7.2.6. Transformación bilineal
7.2.7. Métodos modernos de diseño
Capítulo 1

Modelos de procesos continuos

Los procesos continuos o, mejor dicho, de tiempo continuo, son los que admiten modelos matemáticos relativamente simples, basados en ecuaciones diferenciales. Estos modelos muchas veces son lineales, o admiten ser linealizados, por lo que se obtienen con relativa facilidad y son exactos (siempre y cuando las hipótesis supuestas sean ciertas). Suelen representar el comportamiento de sistemas físicos que siguen leyes físicas elementales.

Los procesos continuos pueden controlarse utilizando controladores analógicos o digitales dando lugar, respectivamente, a sistemas de control analógicos a sistemas controlados por computador.

1.1. Procesos de tiempo contínuo

Tiempo continuo significa que la variable independiente de las ecuaciones del modelo matemático es el tiempo t del proceso y que éste varía de forma continua en un intervalo de \mathbb{R}. Las ecuaciones diferenciales del modelo son, en general, ecuaciones en derivadas parciales (EDP) pero muchas veces se pueden reducir a ecuaciones diferenciales ordinarias (EDO) e incluso a veces a ecuaciones diferenciales ordinarias lineales y con coeficientes constantes. Esto da lugar a la siguiente clasificación de los sistemas de tiempo contínuo:

- Sistemas de parámetros distribuidos (EDP)
- Sistemas de parámetros concentrados (EDO)
- Sistemas lineales (EDO lineales)
- Sistemas lineales de parámetros constantes (EDO lineales con coeficientes constantes)

De todos ellos los últimos son los más simples y para ellos se ha desarrollado una teoría matemática muy potente basada en el Álgebra Lineal. Esto es importante para el ingeniero ya que puede calcular con facilidad la solución de muchos problemas que aparecen en algunas ramas técnicas como por ejemplo

- Circuitos eléctricos
- Sistemas mecánicos
- Sistemas térmicos
- Sistemas de fluidos
Parámetros y variables

En los modelos matemáticos las magnitudes que evolucionan en el tiempo se llaman _variables del sistema_ o, a veces, _señales_. Estas variables son funciones de la variable independiente \(t \), que representa el tiempo.

Las magnitudes que no evolucionan (o cuya evolución no se tiene en cuenta) se llaman _parámetros del sistema_.

En cada uno de los sistemas físicos que vamos a estudiar (mecánicos, eléctricos, térmicos, de fluidos, térmicos y mixtos) existe un conjunto de variables y parámetros que lo caracterizan. En los sistemas eléctricos, por ejemplo, las variables son el voltaje, la carga, la intensidad, el flujo magnético, etc. mientras que los parámetros son la resistencia, el coeficiente de autoinducción, la capacidad, etc. En los sistemas mecánicos de translación las principales variables que intervienen son la fuerza \(f \), el desplazamiento \(x \), la velocidad \(v \) y la aceleración \(a \) siendo sus parámetros significativos la masa \(m \), el componente de rozamiento \(b \) y el componente de elasticidad \(k \). En los sistemas mecánicos de rotación estas variables son el momento \(T \), el desplazamiento angular \(\theta \), la velocidad angular \(\omega \) y la aceleración \(\alpha \) siendo sus parámetros significativos el momento de inercia \(J \), el componente de rozamiento \(B \) y el componente de elasticidad \(K \).

En los sistemas térmicos las variables son el flujo calorífico \(q \) y la temperatura \(\theta \), y las variables la resistencia térmica \(R_t \) y la capacitancia térmica \(C_t \). Y, por último, en los sistemas de fluidos las variables son el caudal \(f \) y la presión \(p \) y sus parámetros la resistencia del fluido \(R_f \), la inductancia del fluido \(L_f \) y la capacitancia del fluido \(C_f \) [?, sec. 2.2].

<table>
<thead>
<tr>
<th>Clase de Sistema</th>
<th>Variables</th>
<th>Parámetros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemas Mecánicos (tras.)</td>
<td>(f, x, v, a)</td>
<td>(m, k, b)</td>
</tr>
<tr>
<td>Sistemas Mecánicos (rot.)</td>
<td>(T, \theta, \omega, \alpha)</td>
<td>(m, k, b)</td>
</tr>
<tr>
<td>Sistemas Eléctricos</td>
<td>(v, i, \phi)</td>
<td>(R, L, C)</td>
</tr>
<tr>
<td>Sistemas Técnicos</td>
<td>(\theta, q)</td>
<td>(R_t, C_t)</td>
</tr>
<tr>
<td>Sistemas de Fluidos</td>
<td>(p, f)</td>
<td>(R_f, C_f)</td>
</tr>
</tbody>
</table>

A pesar de las diferencias que existen entre las variables que caracterizan a las distintas clases de sistemas físicos, existen ciertas semejanzas fundamentales que pueden y deben ser aprovechadas de manera que la modelización resulte sencilla y a ser posible unificada para todos los sistemas.

1.2. La realimentación en los sistemas de control

Un sistema de control sirve para controlar el valor de ciertas variables de salida por medio de otras variables de entrada.

Hay dos procedimientos para ello denominados control en lazo abierto y control en lazo cerrado. Veamos cómo funcionan en el caso monovariable.
1.3. **ELEMENTOS BÁSICOS UN SISTEMA DE CONTROL**

En el control en lazo abierto (figura 1.1) la entrada \(u(t) \) actúa directamente sobre el dispositivo de control (controlador) \(C \) del sistema para producir el efecto deseado en la variables de salida, aunque sin comprobar el valor que toma dicha variable.

![Figura 1.1: Control en lazo abierto](image)

Un sistema de control en lazo cerrado tiene una entrada \(u(t) \), llamada de referencia o de consigna, que sirve para introducir en el sistema el valor deseado para la salida \(y(t) \). Esta salida se mide con un de captador \(M \) y dicha medida \(y_m(t) \) se compara con el valor \(u(t) \) de la entrada de referencia. La diferencia \(\epsilon(t) = u(t) - y_m(t) \) entre ambos valores incide sobre el dispositivo controlador \(C \) y la salida de éste, \(v_c(t) \), sobre el elemento actuador \(A \) el cual a su vez ejerce la debida acción sobre planta \(P \) en el sentido de corregir la diferencia \(\epsilon(t) \). En la figura 1.2 se ha representado un sistema de control en lazo cerrado.

Con un razonamiento intuitivo podemos llegar a la conclusión de que el sistema en lazo cerrado responde mejor ante la presencia de la entrada perturbadora \(w(t) \). Y así es en muchos casos. Sin embargo, hay que ser muy cautos ante este tipo de razonamientos ya muchas veces que pueden fallar. No es posible predecir el comportamiento del sistema con feedback sin conocer previamente su modelo matemático.

![Figura 1.2: Sistema de control en lazo cerrado](image)

El procedimiento de medir la señal de salida y restarla de la de entrada se llama realimentación negativa. El lazo que se forma al realizar la realimentación suele denominarse lazo o bucle de regulación.

1.3. **Elementos básicos un sistema de control**

Los sistemas de control se pueden realizar con diversas tecnologías (mecánica, neumática, electrónica, etc.) pero sus elementos esenciales, indicados a continuación, son siempre los mismos. Advertimos, no obstante, que la terminología puede ser algo engañosa en ciertos contextos, quizás por utilización inadecuada, por traducción defectuosa del Inglés o por uso generalizado de algunos términos. Así, en nuestra área de conocimiento el término *controlar* se usa en el sentido de *gobernar o conducir*, mientras que en el lenguaje coloquial se dice a veces “controlar” con otro significado.
Entradas: son los terminales que tiene el sistema de control por los que puede recibir estímulos que influyen en su evolución. Pueden ser

- Entradas de mando o de control: sirven para introducir órdenes.
- Entradas de referencias o consigna: son entradas de mando que imponen los valores deseados a sus correspondientes salidas.
- Entradas perturbadoras: son entradas que reciben estímulos indeseados.

Salidas: son los terminales que tiene el sistema de control para emitir la respuesta, es decir, para que la respuesta pueda ser observada por el hombre o medida por una máquina.

Planta: es el objeto que se desea controlar. Es un conjunto de componentes y piezas ensamblados entre sí y que cumplen una determinada función.

Proceso: es una serie de operaciones que se realizan sobre uno o varios objetos con un fin determinado.

Perturbaciones: Son alteraciones que se pueden producir en los componentes de una planta o proceso.

Controlador Es un dispositivo que procesa la señal $\epsilon(t)$, es decir la diferencia entre la entrada de referencia $u(t)$ y la medida de la salida $y_m(t)$, y produce una señal de salida $v(t)$ adecuada para controlar la planta.

Actuador Es el dispositivo que convierte la señal de salida del controlador $v_c(t)$ en otra señal $v(t)$, posiblemente de distinta naturaleza y generalmente de mayor potencia, y la aplica a la planta o proceso.

Captador Es el dispositivo de medida. Convierte la señal de salida $y(t)$ en otra magnitud (generalmente eléctrica) $y_m(t)$, apta para ser restada del valor de la entrada $u(t)$.

Ejercicio 1.3.1 Describir el funcionamiento de los siguientes sistemas de control e identificar todos los elementos básicos de cada uno de ellos.

1. Sistema de control de la temperatura de una habitación utilizando una estufa eléctrica con termostato.
2. Sistema de control del nivel de un depósito de agua utilizando un flotador y una válvula.
3. Control de la trayectoria que sigue de un ser humano al desplazarse.
4. Control de posición de un cañón.
5. Control del nivel de un depósito.
6. Regulación de la velocidad de un motor.
7. Control de la posición angular de un motor con reductor.
8. Regulación de la velocidad de la máquina de vapor.
1.4. Diseño de los sistemas de control

Como hemos visto, la fase de análisis de un sistema tiene por objeto la obtención de un modelo matemático a partir de observaciones y experiencias obtenidas a partir de un sistema real.

El problema inverso consiste en la síntesis o diseño y construcción, si procede, de un determinado sistema a partir de un supuesto modelo. Este problema se denomina realización.

La realización tiene en general una mayor dificultad que el análisis, precisando de la utilización de conceptos matemáticos de cierta complejidad. La realización tiene además la dificultad añadida del montaje y puesta a punto ya que resulta prácticamente imposible construir un sistema cuyo funcionamiento sea exactamente igual al previsto en el modelo. Por ello suele ser necesario un proceso de aproximaciones sucesivas con repetidas fases de análisis-síntesis.

1.4.1. Nociones de estabilidad, rapidez y precisión

Tanto en la fase de análisis como en la de síntesis resulta de gran utilidad disponer de métodos de medida que permitan cuantificar el comportamiento dinámico de los sistemas. Estas medidas se efectúan en términos de las denominadas especificaciones de funcionamiento de los sistemas dinámicos de las cuales las más relevantes son estabilidad, precisión y rapidez [Ogata 82, sec. 10.1]. Estas especificaciones tratan de dar una medida del mayor o menor grado de buen funcionamiento del sistema.

La estabilidad es la especificación más importante ya que es exclusiva, es decir, es una condición necesaria para el funcionamiento del sistema. Todo el mundo tiene una noción intuitiva de estabilidad. Cuando hablamos de la estabilidad (o inestabilidad) de un barco, de un avión, de un automóvil o de cualquier otro objeto dinámico, sabemos más o menos a qué nos estamos refiriendo. La inestabilidad puede provocar una rápida parada o, en ocasiones, puede conducir al deterioro e incluso a la destrucción del sistema.

La rapidez y la precisión son virtudes, esencialmente contrapuestas, exigibles en mayor o menor medida a los sistemas de control. Parece lógico, por ejemplo, que una máquina herramienta realice sus operaciones de forma rápida y precisa; sin embargo se puede ver intuitivamente que ciertas operaciones de gran precisión no pueden ser además muy rápidas.

1.5. Clasificación de los sistemas de Control

- **Causalidad** Los sistemas de control se pueden clasificar atendiendo a diferentes propiedades.

 Se dice que un sistema es causal si existe una relación de causalidad entre entradas y salidas. Los sistemas físicos existentes en la Naturaleza son siempre causales. Atendiendo a esta propiedad tenemos

 - Sistemas causales
 - Sistemas no causales

- **Número de variables** Un sistema se denomina monovariable cuando tiene una única variable de entrada y una única variable de salida. En los demás casos se llama multivariable. Tenemos así,

 - Sistemas monovariables
• Sistemas multivariables

- Linealidad Según que las ecuaciones diferenciales sean lineales o no lo sean:
 - Sistemas lineales
 - Sistemas no lineales

- Evolución en el tiempo
 - Sistemas de tiempo continuo
 - Sistemas de tiempo discreto
 - Sistemas de eventos discretos

Los sistemas de tiempo continuo son aquellos en que las magnitudes se representan por funciones continuas de la variable real tiempo.

En los sistemas de tiempo discreto las magnitudes sólo pueden tomar un número finito de valores y son funciones de la variable discreta tiempo.

Los sistemas de eventos discretos, hoy día llamados sistemas comandados por eventos (event-driven systems) o sistemas reactivos, son los que están comandados esencialmente por señales eventuales. Esto es, no existe un período que marque las transiciones de las variables sino que éstas evolucionan únicamente cuando en el sistema suceden ciertos sucesos o eventos con ellas relacionados.

- Invariancia de los parámetros.
 - Sistemas estacionarios
 - Sistemas no estacionarios

Un sistema invariante en el tiempo o sistema estacionario es aquel cuyos parámetros no varían con el tiempo. La respuesta de un sistema estacionario es independiente del instante de tiempo en el que se aplique la entrada y los coeficientes de la ecuación diferencial que rige el funcionamiento del sistema son constantes.

Un sistema no estacionario es el que tiene uno o más parámetros que varían con el tiempo. El instante de tiempo en que se aplica la entrada al sistema debe conocerse y los coeficientes de su ecuación diferencial dependen del tiempo.

- Determinismo Según que la evolución del sistema pueda o no ser determinada con antelación:
 - Sistemas estocásticos
 - Sistemas deterministas

Cuando se conocen exactamente las magnitudes que se aplican a las entradas y leyes que rigen la evolución del sistema, su comportamiento futuro es predecible. Un sistema se denomina determinista cuando, dentro de ciertos límites, su comportamiento futuro es predecible y repetible.

De otro modo el sistema se denomina estocástico, por contener variables aleatorias.

- Localización de los parámetros:
• Sistemas de parámetros concentrados
• Sistemas de parámetros distribuidos

En los primeros los parámetros se suponen concentrados en puntos concretos del sistema mientras que en los segundos están distribuidos espacialmente.

Ejercicio 1.5.1 En los siguientes sistemas de control identificar las entradas y salidas e indicar cómo se controlan y como obtiene la respuesta.

- Fuerza actuando sobre una masa
- Bicicleta
- Climatizador de un automóvil
- Máquina tragaperras
- Máquina herramienta funcionando con un autómata.

Ejercicio 1.5.2 Poner ejemplos de otros sistemas de control y repetir con ellos el ejercicio anterior.

1.6. Modelo de función de transferencia

El modelo matemático de función de transferencia se obtiene aplicando la transformación de Laplace a las ecuaciones diferenciales que modelizan un sistema lineal de parámetros constantes.

Si el sistema es monovariable la ecuación diferencial que lo describe es de la forma (??):

\[
a_n y^{(n)}(t) + \ldots + a_2 \dot{y}(t) + a_1 y(t) + a_0 y(t) = b_m u^{(m)}(t) + \ldots + b_2 \dot{u}(t) + b_1 u(t) + b_0 u(t)
\]

Apliquemos la transformación de Laplace a las variables \(u(t)\) e \(y(t)\):

\[
\mathcal{L}[u(t)] = U(s) \\
\mathcal{L}[y(t)] = Y(s)
\]

Para hallar la transformada de Laplace de la ecuación diferencial (1.1) es necesario conocer los valores de las condiciones iniciales, es decir, los valores de la función y de sus derivadas desde primer orden hasta orden \(n - 1\) en el instante \(t = 0\). Sean estos valores los siguientes:

\[
y_0, \; \dot{y}_0, \; \ddot{y}_0, \; \ldots, \; y^{(n-1)}_0\]

(1.2)

Aplicando la transformación de Laplace a ambos miembros de la ecuación (1.1) obtenemos:

\[
a_n s^n Y(s) - s^{n-1}y_0 - \ldots - \left(s^{n-1}y_0 \right) + \ldots + a_2 s^2 Y(s) - sy_0 - \dot{y}_0 + a_1 Y(s) - y_0 + a_0 Y(s) = U(s) \left(b_m s^m + \ldots + b_2 s^2 + b_1 s + b_0 \right)
\]

(1.3)

Pasando los términos correspondientes a las condiciones iniciales al segundo miembro queda

\[
Y(s)(a_n s^n + \ldots + a_2 s^2 + a_1 s + a_0) = U(s)(b_m s^m + \ldots + b_2 s^2 + b_1 s + b_0)
\]

\[
+ s^{n-1}a_n y_0 + \ldots + s \left(a_n \frac{(n-2)}{y_0} + \ldots + a_2 \frac{y_0}{y_0} + \frac{a_n}{y_0} + \ldots + a_2 \frac{y_0}{y_0} + a_1 y_0 \right)
\]

(1.4)
y haciendo
\[c_{n-1} = a_n y_0 \]
\[\ldots \]
\[c_1 = a_n (n-2) y_0 + \ldots + a_2 y_0 \]
\[c_0 = a_n (n-1) y_0 + \ldots + a_2 y_0 + a_1 y_0 \] (1.5)

la ecuación puede escribirse de la forma
\[Y(s) = \frac{b_m s^m + \ldots + b_2 s^2 + b_1 s + b_0}{a_n s^n + \ldots + a_2 s^2 + a_1 s + a_0} U(s) \] (1.6)

Entonces la expresión de la transformada de Laplace de la salida del sistema puede escribirse
\[Y(s) = G(s) U(s) + \frac{c(s)}{a(s)} \] (1.9)

El polinomio denominador \(a(s) \) de la función de transferencia se denomina polinomio característico del sistema. La ecuación
\[a_n s^n + \ldots + a_2 s^2 + a_1 s + a_0 = 0 \] (1.10)

que resulta de igualar a cero el polinomio característico se denomina \textit{ecuación característica} del sistema.

Sistemas multivariables

La generalización del concepto de función de transferencia a sistemas multivariables se realiza por medio de la \textit{matriz de funciones de transferencia}. La matriz de funciones de transferencia de un sistema con \(q \) entradas y \(p \) salidas es una matriz
\[
G(s) = \begin{bmatrix}
g_{11}(s) & \ldots & g_{1j}(s) & \ldots & g_{1q}(s) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
g_{i1}(s) & \ldots & g_{ij}(s) & \ldots & g_{iq}(s) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
g_{p1}(s) & \ldots & g_{pj}(s) & \ldots & g_{pq}(s)
\end{bmatrix}
\] (1.11)

cuyos elementos son funciones racionales. El elemento \(g_{ij} \) de esta matriz denota la función de transferencia existente entre la salida \(y_i \) y la entrada \(u_j \) del sistema:
\[g_{ij}(s) = \frac{Y_i(s)}{U_j(s)} \] (1.12)
1.7. MODELO DE ESTADO

Los sistemas de ecuaciones diferenciales admiten una representación más general que las dadas por los modelos de función de transferencia o de estado. Aplicando la transformación de Laplace al sistema \((??)\) obtenemos

\[P(s)X(s) = Q(s)U(s) \]
\[Y(s) = R(s)X(s) + W(s)U(s) \]

(1.13)

que se denomina descripción polinómica del sistema

1.7. Modelo de estado

El modelo matemático de un sistema lineal monovariable de parámetros constantes es una ecuación diferencial ordinaria lineal

\[a_n(t) \frac{\text{d}^n}{\text{d}t^n} x(t) + \ldots + a_2(t) \frac{\text{d}^2}{\text{d}t^2} x(t) + a_1(t) \frac{\text{d}}{\text{d}t} x(t) + a_0(t) x(t) = u(t) \]

(1.14)

junto con otra ecuación algebraica

\[y(t) = b_m(t) \frac{\text{d}^m}{\text{d}t^m} x(t) + \ldots + b_2(t) \frac{\text{d}^2}{\text{d}t^2} x(t) + b_1(t) \frac{\text{d}}{\text{d}t} x(t) + b_0(t) x(t), \]

(1.15)

o bien un sistema de ecuaciones diferenciales lineales. Entonces es siempre posible despejar la derivada de orden máximo y obtener una expresión de la forma

\[\dot{x} = f(t, x), \]

(1.16)

que suele llamarse forma normal. Haciendo los cambios \(x_1 := x, x_2 := \dot{x}, x_3 := \ddot{x}, \ldots\), el sistema se pueden escribir en la forma

\[\dot{x} = Ax + Bu \]
\[y = Cx + Du \]

(1.17)

en donde

\[x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_q \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}, \quad x_i, u_j, y_k \in \mathbb{R} \]

(1.18)

La primera ecuación de (1.17) se llama ecuación de estado y la segunda, ecuación de salida.

1.8. Linealización

La teoría de los sistemas lineales es aplicable a cualquier clase sistema dinámico cuyo comportamiento pueda expresarse en la forma

\[\dot{x} = Ax + Bu \]
\[y = Cx + Du \]

Los sistemas físicos son en general no lineales. La mayor dificultad que surge en el estudio de estos sistemas es que no existen clases de sistemas no lineales, mediante las cuales su estudio
CAPÍTULO 1. MODELOS DE PROCESOS CONTINUOS

podría asemejarse al de los sistemas lineales, sino que han de ser estudiados de forma individual y utilizando métodos particulares en cada caso. Por ello los resultados que se obtienen no son generales sino que están circunscritos al ámbito del sistema objeto de estudio.

En muchos casos el único método existente para el estudio de un sistema no lineal dado, aparte de la experimentación en el propio sistema, es la simulación. Los actuales paquetes de CACSD (diseño asistido por computador de sistemas de control) permiten simular con facilidad una gran variedad de sistemas no lineales.

Un método muy importante para el estudio de los sistemas no lineales es el de Linealización. Este método permite que algunos sistemas no lineales puedan ser considerados como lineales dentro de un entorno alrededor de cierto punto, o trayectoria, de funcionamiento. La importancia de este método radica en que al convertir un sistema no lineal dado en otro lineal, pueden aplicarse al mismo todos los resultados de la teoría de Sistemas Lineales con lo que su estudio resulta sistemático y los resultados obtenidos son generales en el ámbito de los sistemas lineales.

Sea un sistema dinámico no lineal definido por el sistema de ecuaciones no lineales de primer grado

\[\dot{x} = f(x, t), \quad x(t_0) = x_0 \]

(1.19)

donde \(f \) está definida en algún subconjunto abierto \(\Omega \times I \subseteq \mathbb{R}^n \times \mathbb{R} \). Se dice que el sistema descrito por (1.19) tiene un punto de equilibrio aislado \(x_e \in \mathbb{R}^n \) si se cumplen

1. \(f(x_e, t) = 0, \quad \forall t \in I \)
2. \(f(x, t) \neq 0, \quad \forall t \in I \) \(\forall x \neq x_e \) en algún entorno de \(x \)

Como \(x_e \) es independiente de \(t \), podemos escribir

\[
\dot{x} = \frac{d}{dt}(x - x_e) \\
= f((x - x_e) + x_e, t) \\
= g(x - x_e, t)
\]

para alguna función \(g \). De aquí que

\[
\dot{x} = g(\bar{x}), \quad \bar{x} = x - x_e
\]

(1.20)

Entonces \(x = 0 \) es un punto de equilibrio de (1.20). Por tanto, podemos considerar siempre el origen como un punto de equilibrio, sin más que realizar un simple cambio de coordenadas.

Si un sistema evoluciona con pequeñas desviaciones alrededor de un punto de funcionamiento o estado de equilibrio \((x_0, u_0) \), puede admitir ser linealizado en ese punto. De forma más general, el sistema puede admitir ser linealizado a lo largo de una trayectoria \((x_0(\cdot), u_0(\cdot)) \) en el espacio de estado.

Vamos a suponer que el sistema está expresado en forma de un sistema de ecuaciones diferenciales de primer grado, en general no lineales, denominadas ecuaciones de estado:

\[
\dot{x} = f(x(t), u(t), t), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^q
\]

(1.21)
y que \(\{x_0(\cdot), u_0(\cdot)\} \) es una solución nominal del sistema, que representa una trayectoria en el espacio de estado. Consideraremos primeramente el caso monovariable

\[
\dot{x} = f(x(t), u(t), t), \quad x \in \mathbb{R}, \ u \in \mathbb{R}
\]
1.8. LINEALIZACIÓN

Supongamos que perturbamos la solución de forma que

\[x(t) = x_0(t) + \delta x(t), \quad u(t) = u_0(t) + \delta u(t) \] \hspace{1cm} (1.22)

y que las potencias \((\delta x)^i, (\delta u)^i, i > 1\), son muy pequeñas comparadas con \(\delta x, \delta u\). Es decir

\[(\delta x)^i = o(\delta x, \delta u), \quad (\delta u)^i = o(\delta x, \delta u), \quad i > 1 \]

Derivando (1.22) tenemos

\[\dot{x}(t) = \dot{x}_0(t) + \dot{\delta x}(t) \]

de donde

\[\dot{\delta x}(t) = \dot{x}(t) - \dot{x}_0(t) \]

Supongamos ahora que \(f(.)\) es lo suficientemente lisa (sin cambios bruscos) para admitir el desarrollo en serie de Taylor

\[f[x(t), u(t), t] = f[x_0(t), u_0(t), t] + f_{x}(t)\delta x(t) + f_{u}(t)\delta u(t) + o(\delta x, \delta u) \]

\[\dot{x}(t) - \dot{x}_0(t) = f_{x}(t)\delta x(t) + f_{u}(t)\delta u(t) + o(\delta x, \delta u) \] \hspace{1cm} (1.23)

en donde

\[f_{x}(t) = \frac{\partial f}{\partial x}|_{x_0, u_0}, \quad f_{u}(t) = \frac{\partial f}{\partial u}|_{x_0, u_0} \]

En el caso multivariable \(f(., x(., u(., .))\) son vectores. Entonces \(f_{x}(.)\) y \(f_{u}(.)\) son los jacobianos \(J_{x_0, u_0}\) de \(f(.)\) respecto de \(x\) y de \(u\), respectivamente, que dependen de \(x_0(., .), u_0(., .)\).

\[J_{x_0} = \frac{\partial f}{\partial x}|_{x_0, u_0} = \left[\begin{array}{c} \frac{\partial f_1}{\partial x_1} \\ \vdots \\ \frac{\partial f_n}{\partial x_n} \end{array} \right]_{x_0, u_0}, \quad J_{u_0} = \frac{\partial f}{\partial u}|_{x_0, u_0} = \left[\begin{array}{c} \frac{\partial f_1}{\partial u_1} \\ \vdots \\ \frac{\partial f_n}{\partial u_n} \end{array} \right]_{x_0, u_0} \] \hspace{1cm} (1.24)

De esta manera se obtiene la ecuación linealizada

\[\dot{\delta x} = f_{x}\delta x + f_{u}\delta u \] \hspace{1cm} (1.25)

que se puede escribir en la forma habitual

\[\dot{x}(t) = Ax(t) + B\delta u(t) \]

siendo \(\delta x(t) = \delta x(t), \delta u(t) = \delta u(t), A(t) = f_{x}(t), B(t) = f_{u}(t)\). Es importante destacar que las matrices \(A\) y \(B\) (jacobianos) son funciones de tiempo si la solución de la ecuación diferencial no es constante.

Ejemplo 1.8.1 El depósito de la figura ?? tiene sección constante de área \(A_1\) y está lleno de agua hasta una altura \(h(t)\) variable. El caudal \(q(t)\) de salida de agua se controla mediante una válvula que abre o cierra el orificio de salida de área \(a(t)\).

Vamos a obtener el primer modelo no lineal, y después, el modelo lineal por linealización.

La energía potencial de una masa \(m\) de agua situada en la superficie, es decir a una altura \(h(t)\) es \(E_p = mgh(t)\). La misma masa de agua cuando sale por el tubo tendrá una energía cinética \(E_c = \frac{1}{2}mv(t)^2\). Por el principio de conservación de la energía, ambas energías han de ser iguales,

\[E_p = mgh(t) = \frac{1}{2}mv(t)^2 = E_c, \]
por lo que la velocidad de salida del agua es
\[v(t) = \sqrt{2gh(t)}. \]
Como el caudal de salida se obtiene multiplicando el área \(a(t) \) de salida por la velocidad \(v(t) \) del agua, tenemos
\[q(t) = a(t)v(t) = a(t)\sqrt{2gh(t)} \]

Por otro lado, el caudal \(q(t) \) ha de ser igual a la variación del volumen \(A_1h(t) \) de agua en el depósito, es decir
\[q(t) = \frac{d}{dt}A_1h(t) = A_1\frac{dh}{dt} \]
Igualando las dos últimas expresiones obtenemos la ecuación diferencial, no lineal, que es el modelo matemático:
\[\frac{dh}{dt} = \frac{1}{A_1}a(t)\sqrt{2gh(t)} \]

Vamos a hacer la linealización del sistema. Para ello, lo primero es escoger un punto de funcionamiento (o estado de equilibrio). Vamos a escoger \(a_0 \) y \(h_0 \) como valores de equilibrio para \(a(t) \) y \(h(t) \). Esto, en la práctica, significará que la altura \(h(t) \) se va a mantener con un valor próximo a \(h_0 \) y que el valor del caudal \(q(t) \) va a ser cercano a \(a_0 \). Esto mismo se puede expresar definiendo dos nuevas variables \(x(t) := h(t) - h_0 \) y \(u(t) := a(t) - a_0 \) que representan los "pequeños" incrementos que toman las variables \(h(t) \) y \(a(t) \) respecto del punto de equilibrio.

La función \(f \) de la ecuación 1.20 es ahora
\[f(h, a) = \frac{1}{A_1}a(t)\sqrt{2gh(t)}, \]
en donde \(h(t) \) y \(a(t) \) hacen el papel de \(x(t) \) y \(u(t) \), respectivamente. Las derivadas parciales de \(f \), respecto de \(h \) y respecto de \(u \), en el punto \(h_0, a_0 \), nos dan los parámetros de la linealización. Derivando \(f \) respecto de \(h \), tenemos
\[\frac{\partial f}{\partial h} \bigg|_{h_0, a_0} = \frac{1}{A_1} \frac{2ga}{2\sqrt{2gh}} \bigg|_{h_0, a_0} = \frac{ga_0}{A_1\sqrt{2gh_0}} := A, \]
1.9. TRANSFORMACIONES ENTRE MODELOS

y, derivando f respecto de a,

$$\frac{\partial f}{\partial a}{\bigg|}_{h_0,a_0} = \frac{1}{A_1} \sqrt{2gh_0} := B.$$

Con esto, ya tenemos el modelo linealizado en h_0, a_0 respecto de las variables $x(t)$ y $a(t)$:

$$\begin{cases}
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\end{cases}$$

Obsérvese que para obtener el modelo hemos supuesto (implícitamente) que no hay pérdidas de energía por rozamiento.

1.9. Transformaciones entre modelos

En las anteriores secciones hemos visto las expresiones habituales de los modelos matemáticos de los sistemas de tiempo continuo. El modelo más general, válido para sistemas lineales y no lineales, es el modelo de ecuación diferencial. Los sistemas lineales admiten el modelo de estado y, si son de coeficientes constantes, el modelo de función de transferencia o, más general, el modelo denominado representación polinomial.

La preguntas que surgen inmediatamente son que, dada la representación de un sistema en uno de los modelos, ¿es posible obtener su representación en otros modelos? Si la respuesta a esta pregunta es afirmativa, ¿cómo se pasa de unos a otros modelos?

Ecuaición diferencial \rightarrow función de transferencia

La obtención del modelo de función de transferencia a partir del modelo de ecuación diferencial lineal y de coeficientes constantes se realiza de modo inmediato, como hemos visto en la sección (1.6), aplicando la transformación de Laplace a la ecuación diferencial (1.1), suponiendo condiciones iniciales nulas:

$$a_n y^{(n)}(t) + \ldots + a_2 \dot{y}(t) + a_1 y(t) + a_0 y(t) = b_m u^{(m)}(t) + \ldots + b_2 \dot{u}(t) + b_1 u(t) + b_0 u(t)$$

con lo que se obtiene la función de transferencia (1.8)

$$G(s) = \frac{b_m s^m + \ldots + b_2 s^2 + b_1 s + b_0}{a_n s^n + \ldots + a_2 s^2 + a_1 s + a_0} = \frac{b(s)}{a(s)}$$

Como puede verse, si exceptuamos las condiciones iniciales, la función de transferencia contiene exactamente la misma información que la ecuación diferencial. Los coeficientes de constantes $a_i, b_j, i = 0, \ldots, n, j = 0, \ldots, m$ de la ecuación diferencial son los coeficientes de los polinomios denominador $a(s)$ y numerador $b(s)$ de la función de transferencia $G(s)$.

La transformación inversa, de función de transferencia a ecuación diferencial, se obtiene aplicando la transformación inversa \mathcal{L}^{-1} de Laplace a la expresión

$$X(s)(b_m s^m + \ldots + b_2 s^2 + b_1 s + b_0) = Y(s)(a_n s^n + \ldots + a_2 s^2 + a_1 s + a_0)$$

En el supuesto de unicidad de la transformación inversa \mathcal{L}^{-1} de Laplace, el resultado vuelve a ser la ecuación diferencial (1.1)
ECUACIÓN DIFERENCIAL → ECUACIONES DE ESTADO

Este paso, como ya se ha indicado en la sección (1.14) consiste en obtener el sistema en forma normal equivalente a la ecuación diferencial dada.

FUNCIÓN DE TRANSFERENCIA → ECUACIONES DE ESTADO

El paso del modelo de estado al de función de transferencia se realiza aplicando la transformación de Laplace a las ecuaciones de estado del sistema. El paso inverso, del modelo de función de transferencia al de estado se denomina realización.

OBTENCIÓN DE LA MATRIZ DE TRANSFERENCIA A PARTIR DEL MODELO DE ESTADO

Sea un sistema dinámico cuyo modelo de estado viene dado por las ecuaciones

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\]
(1.26)

en donde \(x \in \mathbb{R}^n, u \in \mathbb{R}^q, y \in \mathbb{R}^p, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times q}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times q} \). Apliquemos la transformación de Laplace a la ecuación de estado

\[
\begin{align*}
sl_nX(s) &= AX(s) + BU(s) \\
sl_nX(s) - AX(s) &= BU(s) \\
(sI_n - A)X(s) &= BU(s)
\end{align*}
\]

La matriz \(sl_n - A \) es un haz regular de matrices, o matriz polinómica de grado uno. Es decir, es una matriz cuyos elementos son polinomios cuyo grado máximo es uno. Esta matriz se llama matriz característica del sistema. Su determinante \(|sI - A| \) se llama polinomio característico del sistema y es siempre distinto de cero por lo que esta matriz es siempre invertible. Por tanto podemos poner

\[
X(s) = (sl_n - A)^{-1}BU(s) \]
(1.27)

Apliquemos ahora la transformada de Laplace a la ecuación de salida, segunda ecuación de(1.26)

\[
Y(s) = CX(s) + DU
\]

Sustituyendo (1.27) en esta ecuación queda

\[
Y(s) = C(sl_n - A)^{-1}BU(s) + DU
\]

con lo que la matriz de transferencia es

\[
G(s) = \frac{Y(s)}{U(s)} = C(sl_n - A)^{-1}B + D
\]

REALIZACIÓN

La obtención del modelo de estado a partir del modelo de matriz de transferencia se llama realización. Esta denominación se debe a que la información suministrada por el modelo de estado, que contiene datos sobre la estructura interna del sistema, se encuentra más próxima a la realidad que la dada por el modelo de función de transferencia que sólo se refiere a la relación entre la entrada y la salida del sistema. Como veremos más adelante, a partir de las matrices \(A, B, C, B \), que definen un modelo de estado dado, puede obtenerse inmediatamente
1.9. TRANSFORMACIONES ENTRE MODELOS

el denominado diagrama de simulación. Este diagrama contiene toda la información necesaria para construir un sistema físico (analógico o digital) que responde al modelo de estado dado. Por ello, por conveniencia, se suele llamar realización a la cuaterna de matrices \(A, B, C, D \).

Dada la realización \(A, B, C, D \) de un sistema cuyo modelo de estado \(\dot{x} = Ax + Bu \)

\(y = Cx + Du \)

corresponde a la matriz de transferencia \(G(s) \), es decir que \(G(s) = C(sI_n - A)^{-1}B + D \), podemos escribir otra realización haciendo el cambio de base

\(x = P\bar{x} \)

\(|P| \neq 0 \) (1.29)

en el espacio de estado. Sustituyendo en (1.28) \(x \) por \(P\bar{x} \) obtenemos como modelo de estado transformado:

\(\dot{\bar{x}} = P^{-1}AP\bar{x} + P^{-1}Bu = \bar{A}\bar{x} + \bar{B}u \)

\(y = CP\bar{x} + Du = \bar{C}\bar{x} + Du \) (1.30)

Obsérvese cómo al hacer un cambio de base en el espacio de estado hemos obtenido una nueva realización definida por las matrices \(\bar{A}, \bar{B}, \bar{C}, \bar{D} \). Parece lógico pensar que un cambio de base no debería de afectar al comportamiento dinámico entrada-salida del sistema y, en efecto, así ocurre. Es fácil ver que las matrices de transferencia y los polinomios característicos de las realizaciones \(A, B, C, D \) y \(\bar{A}, \bar{B}, \bar{C}, \bar{D} \) son idénticos.

Existen, por tanto, infinidad de realizaciones de una matriz de transferencia \(G(s) \), ya que podemos definir infinitas matrices \(P \) de transformación. La transformación del vector de estado definida en (1.29) se llama transformación de semejanza ya que la matriz de planta \(A \) del modelo de estado original y \(P^{-1}AP \) del transformado son semejantes.

De las infinitas posibles realizaciones de una determinada matriz de transferencia \(G(s) \), definidas cada una de ellas por sus matrices \(A, B, C, D \), hay algunas, denominadas canónicas, que tienen una forma especial y que corresponden a ciertas configuraciones con nombre propio del sistema físico a ellas asociado. Son las formas canónicas denominadas controlador, observador, controlabilidad, observabilidad y diagonal.

Veamos cómo son las formas canónicas correspondientes a una función de transferencia dada \(G(s) \) (caso monovariable). Supongamos que el polinomio característico de \(G(s) \) es mónico, es decir, el coeficiente del término de grado \(n \)-ésimo es 1, y que \(G(s) \) es estrictamente propia. Entonces la función de transferencia se puede escribir de la forma

\[
G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \ldots + a_{n-1} s + a_n}
\]

(1.31)

Obsérvese que los coeficientes \(a_i, b_j \) de los polinomios numerador y denominador aparecen en orden inverso al habitual.

Las matrices que definen la forma canónica controlador de \(G(s) \) son

\[
\begin{align*}
A_{cr} &= \begin{bmatrix} -a_1 & -a_2 & \ldots & -a_{n-1} & -a_n \\ 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0 \end{bmatrix}, & B_{cr} &= \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \\
C_{cr} &= \begin{bmatrix} b_1 & b_2 & \ldots & b_{n-1} & b_n \end{bmatrix}, & D_{cr} &= [0]
\end{align*}
\]
Las matrices que definen la forma canónica observador de \(G(s) \) son

\[
A_{or} = \begin{bmatrix}
-a_1 & 1 & 0 & \ldots & 0 \\
-a_2 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{n-1} & 0 & 0 & \ldots & 1 \\
-a_n & 0 & 0 & \ldots & 0
\end{bmatrix} \quad B_{or} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}
\]

\[
C_{or} = [1 \ 0 \ 0 \ \ldots \ 0] \quad D_{or} = [0]
\]

Las matrices que definen la forma canónica controlabilidad de \(G(s) \) son

\[
A_{cd} = \begin{bmatrix}
0 & 0 & \ldots & 0 & -a_n \\
1 & 0 & \ldots & 0 & -a_{n-1} \\
0 & 1 & \ldots & 0 & -a_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_1
\end{bmatrix} \quad B_{cd} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}
\]

\[
C_{cd} = [\beta_1 \ \beta_2 \ \ldots \ \beta_{n-1} \ \beta_n] \quad D_{cd} = [0]
\]

Las matrices que definen la forma canónica observabilidad de \(G(s) \) son

\[
A_{od} = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a_n & -a_{n-1} & \ldots & -a_2 & -a_1
\end{bmatrix} \quad B_{od} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{n-1} \\ \beta_n \end{bmatrix}
\]

\[
C_{od} = [1 \ 0 \ 0 \ \ldots \ 0] \quad D_{od} = [0]
\]

Los números \(\beta_1, \beta_2, \ldots, \beta_n \) que aparecen en las dos últimas formas canónicas, controlabilidad y observabilidad, son los denominados parámetros de Markov, cuyo valor viene dado por

\[
\begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_{n-1} \\
\beta_n
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \ldots & 0 \\
a_1 & 1 & \ldots & 0 \\
\ddots & \ddots & \ddots & \vdots \\
a_{n-2} & a_{n-3} & \ddots & 1 \\
a_{n-1} & a_{n-2} & \ddots & a_1
\end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}
\]

Por último, las matrices de la forma canónica diagonal correspondiente a una realización definida por sus matrices \(A, B, C, D \), está definida por la transformación \(P \) que pasa la matriz de planta a su forma diagonal. Si los valores propios de \(A \) son todos distintos, la transformación \(P \) es una matriz cuadrada cuyas columnas son los vectores propios de \(A \). Las nuevas matrices, por (1.30) son:

\[
\hat{A} = P^{-1}AP = \text{diag}[\lambda_1, \lambda_2, \ldots, \lambda_n] \\
B = P^{-1}B, \quad \hat{C} = CP, \quad \hat{D} = D
\]

Si la matriz \(A \) tiene valores propios repetidos, la matriz \(P \) es la que transforma \(A \) en su forma canónica de Jordan.
Capítulo 2

Respuesta temporal

2.1. Diagramas de bloques

Un diagrama de bloques es un conjunto de rectángulos o bloques, cada uno de los cuales representa un componente del sistema, enlazados entre sí a través de flechas que representan a variables del sistema.

Los diagramas de bloques utilizan cuatro elementos básicos en sus esquemas:

1. **Flecha**: Representa a una variable del sistema. Sobre la misma se indica la correspondiente variable. En la figura 2.1, $U(s)$ e $Y(s)$ son dos variables.

2. **Bloque**: Representa a un componente del sistema. Es un rectángulo dentro del cual se indica la correspondiente función de transferencia. Tiene una variable de entrada y otra de salida, representadas por dos flechas, de forma que la variable de salida es el producto de la variable de entrada por la función de transferencia. El bloque $G(s)$ de la figura 2.1 representa a un componente del sistema identificado matemáticamente por su función de transferencia $G(s)$. La variable de entrada es $E(s)$ y la de salida $Y(s)$, de manera que,

 \[Y(s) = E(s)G(s) \]

3. **Punto de suma**: Representa la operación de suma o resta entre varias variables. Se representa por un círculo con varias variables de entrada y una de salida, siendo esta última igual a la suma algebraica de todas las variables de entrada. Los signos de esta suma deben
indicarse en cada variable si son negativos. En la figura 2.1 se suman algebraicamente las variables \(U(s) \) e \(R(s) \) siendo \(E(s) \) el resultado, es decir,

\[
E(s) = U(s) - H(s)Y(s)
\]

4. **Punto de bifurcación**: Una flecha, que representa a una variable, se puede bifurcar en varias, cada una de las cuales representa a la misma variable. Se representa por un punto grueso. En la figura 2.1 la variable de salida \(Y(s) \) se bifurca en dos, en el punto de bifurcación indicado.

El diagrama de bloques permite representar un sistema de regulación incluyendo todos sus componentes y especificando la función de transferencia de cada uno de ellos. Cuando el número de componentes es elevado puede resultar conveniente realizar agrupamientos entre varios bloques para simplificar el esquema. Por otro lado suele ser necesario obtener funciones de transferencia globales de un conjunto de bloques, o incluso de todo el diagrama, para efectuar posteriores procesos de cálculo. Existen una serie de reglas, derivadas de los teoremas del álgebra elemental, que sirven para simplificar los diagramas de bloque, obteniendo un bloque único y su correspondiente función de transferencia, a partir de otros varios.

El bloque es un elemento multiplicativo: la variable de salida de un bloque es igual a la variable de entrada al mismo multiplicada por su función de transferencia. Por otro lado, las variables se suman algebraicamente en los puntos de suma. Por tanto, podemos aplicar a los diagramas de bloques las propiedades algébricas de la suma y el producto, tales como:

- Propiedad conmutativa del producto y de la suma.
- Propiedad asociativa del producto y de la suma.
- Propiedad distributiva del producto respecto a la suma.
- Elementos neutros de la suma y del producto.
- Elementos simétricos de la suma y del producto.

En las tablas 2.1 y 2.2 se muestran algunas de estas reglas que, sin ser las únicas, pueden resultar de utilidad para simplificar los diagramas de bloques. En cada fila de la tabla se ha representado el diagrama de bloques original, en la primera columna, y el diagrama equivalente o simplificado en la segunda.

Diagrama de bloques del modelo de estado

Sabemos que el modelo de estado de un sistema dinámico es

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

en donde \(x \in \mathbb{C}^n \), \(u \in \mathbb{C}^q \), \(y \in \mathbb{C}^p \). Aplicando la transformada de Laplace, supuestas nulas las condiciones iniciales, obtenemos

\[
\begin{align*}
sX(s) &= AX(s) + BU(s) \\
Y(s) &= CX(s) + DU(s)
\end{align*}
\] (2.1)
Cuadro 2.1: Simplificación de diagramas de bloque
Cuadro 2.2: Simplificación de diagramas de bloque
2.2. GRAFOS DE FLUJO DE SEÑAL

que es el modelo transformado. Este modelo de estado transformado puede representarse mediante un diagrama de bloques en el cual \(U(s) \) es la entrada, \(Y(s) \) la salida y \(X(s) \) el estado, las tres transformadas por Laplace. Por ser estas variables son multidimensionales, se acostumbra a representarlas mediante flechas más gruesas que las que se utilizan para los bloques monovariables [Ogata 82, sec. 14.2]. En la figura 2.2 se ha representado el diagrama de bloques correspondiente a 2.1.

Figura 2.2: Diagrama de bloques del modelo de estado

Los grafos de flujo de señal tienen únicamente dos elementos, que se indican a continuación:

2.2. Grafos de flujo de señal

Cuando los sistemas son de cierta complejidad, el método de representación por diagramas de bloques puede resultar laborioso en su construcción y más aún en la tarea de simplificación para obtener las funciones de transferencia, puesto que las reglas de simplificación de los diagramas de bloque no son sistemáticas. El método de los grafos de flujo de señal resulta entonces más adecuado, por su mayor simplicidad y por disponer de una formula para la obtención de las funciones de transferencia [Ogata 82, sec. 4.7].

Figura 2.3: Rama entre dos nodos

Los grafos de flujo de señal tienen únicamente dos elementos, que se indican a continuación:
1. **Arista**: Es un segmento de línea orientado que discurre entre dos nodos. Corresponde a un componente del sistema definido por su función de transferencia o transmittancia. Es equivalente al elemento bloque de los diagramas de bloque. En la figura 2.3, se ha representado una rama, con transmittancia $T(s)$, entre los nodos correspondientes a las variables $U(s)$ y $Y(s)$, y su diagrama de bloques equivalente. Se cumple que

$$Y(s) = U(s)T(s)$$

2. **Nodo**: Es un pequeño círculo y corresponde a una variable del sistema. El valor de la variable de un nodo es igual a la suma de los productos transmittancias de todas las ramas que entran al nodo, multiplicadas por las variables correspondientes a los nodos de los que parten. El nodo sustituye a la flecha de variable, al punto de suma y al punto de bifurcación de los diagramas de bloque. Así, en la figura 2.4, el valor de la variable y es

$$Y = U_1T_1 + U_2T_2 + U_3T_3$$

Figura 2.4: Nodo con tres ramas de entrada

En los grafos de flujo de señal la suma algebraica de variables se realiza mediante transmittancias unitarias con signo positivo o negativo. Por ejemplo, en la figura 2.5,

$$X = U_1 - U_2 + U_3$$

El punto de bifurcación de los diagramas de bloque se realiza también mediante una transmittancia unitaria, como puede apreciarse en la figura 2.6, en la que la variable U se bifurca a otros tres nodos.

Formula de la ganancia de Mason

El diagrama de bloques y el grafo de flujo de señal contienen la misma información: ambos describen conjunto de ecuaciones lineales entre las variables del sistema. Las funciones de transferencia determinan las relaciones existentes entre cada salida y cada una de las entradas. La formula de la ganancia de Mason viene a ser un caso particular de resolución de sistemas de ecuaciones por aplicación de la regla de Crammer. Para aplicar la formula de Mason es preciso realizar las definiciones siguientes:
1. **Trayectoria:** Es cualquier camino, recorrido en el sentido indicado por las flechas de las ramas, entre un nodo de entrada y otro de salida, que pase sólo una vez por cada nodo. Se denomina *ganancia de trayectoria* al producto de las transmitancias de todas las ramas de la trayectoria.

2. **Ciclo:** Es cualquier camino cerrado, recorrido en el sentido indicado por las flechas de las ramas, que pase sólo una vez por cada nodo. Se denomina *ganancia de lazo* al producto de las transmitancias de todas las ramas del lazo. Sean P_1, P_2, \ldots, P_n las ganancias de todas las trayectorias existentes entre un nodo de entrada P y otro de salida Q, y sean L_1, L_2, \ldots, L_n las ganancias de todos los lazos del grafo.

La función de transferencia $T_{QP} = Y_Q/U_P$ dada por la fórmula de Mason es:

$$T_{QP} = \frac{P_1 \Delta_1 + P_2 \Delta_2 + \ldots + P_n \Delta_n}{\Delta}$$

siendo Δ el determinante del grafo de flujo de señal (con más propiedad de la matriz asociada al grafo) y $\Delta_1, \Delta_2, \ldots, \Delta_n$ los cofactores correspondientes a cada una de las trayectorias.

El determinante Δ del grafo se obtiene mediante la expresión siguiente (fórmula de Mason):

$$\Delta = 1 - \sum L_i + \sum L_i L_j - \sum L_i L_j L_k + \ldots$$ \hspace{1cm} (2.2)

en la que $\sum L_i$ es la suma de las ganancias de todos los ciclos, $\sum L_i L_j$ es la suma de los productos de las ganancias de todas las combinaciones posibles de dos ciclos disjuntos, $\sum L_i L_j L_k$ es la suma de los productos de las ganancias de todas las combinaciones posibles de tres ciclos disjuntos, etc.
El cofactor Δ_i de una trayectoria P_i se obtiene eliminando de la expresión (2.2) del determinante del grafo, los términos en los que aparezcan ciclos que tocan a la trayectoria.

2.3. Cálculo de la respuesta temporal

La respuesta temporal de un sistema es el conjunto de valores que toma su salida en función del tiempo cuando al mismo se aplica una entrada dada. Los términos entrada y salida se refieren a una variable (sistema monovariable), o a varias (sistema multivariable). Existen varios métodos de obtención de la respuesta temporal, de los que mencionaremos los siguientes:

![Figura 2.7: Función de transferencia de un sistema](image)

1. **Resolución de las ecuaciones diferenciales.**

 Una vez obtenido el modelo matemático por medio de ecuaciones diferenciales pueden aplicarse los métodos matemáticos de resolución analítica las mismas para hallar la respuesta. De este método derivan los métodos basados en la transformada de Laplace, para el caso de sistemas lineales, y los basados en la integración numérica de las ecuaciones diferenciales, válidos para sistemas lineales y no lineales.

2. **Métodos basados en la transformada de Laplace.**

 La aplicación transformada de Laplace suministra un método de resolución de las ecuaciones diferenciales lineales, ya descrito anteriormente, que permite obtener la salida (transformada) de un sistema multiplicando la entrada (transformada) por la función de transferencia (Figura 2.7).

3. **Resolución de las ecuaciones de estado.**

 El método de obtención de la respuesta $y(t)$, dada la entrada $u(t)$, es el siguiente:

 - Hallar $G(s)$ a partir de las ecuaciones del sistema físico.
 - Hallar $U(s) = \mathcal{L}[u(t)]$
 - Hallar $Y(s) = U(s)G(s)$
 - Hallar $y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}[U(s)G(s)]$

 A partir de éste método general se han desarrollado diferentes variantes en función, sobre todo, del procedimiento empleado para realizar el apartado $3d$, es decir, el cálculo de la función antitransformada de la función $Y(s)$.
2.3. CÁLCULO DE LA RESPUESTA TEMPORAL

Método de la integral de convolución

Este método [Ogata 82, sec. 6.1] consiste en aplicar la propiedad de convolución de la transformada de Laplace cuya expresión es,

\[\mathcal{L}[f_1(t) \otimes f_2(t)] = F_1(s)F_2(s) \] (2.3)

siendo \(\otimes \) la operación de convolución definida por la expresión:

\[f_1(t) \otimes f_2(t) = \int_0^t f_1(t-\tau)f_2(\tau)d\tau \]

Si la entrada \(u(t) \) es un impulso de Dirac aplicado en \(t = 0 \) es decir \(u(t) = \delta(t) \), entonces \(U(s) = 1 \) y la respuesta \(y(t) \) se denomina respuesta impulso para el sistema o función ponderatriz. Su expresión es

\[y(t) = \mathcal{L}^{-1}[1.G(s)] = g(t) \]

La función ponderatriz es la transformada inversa de Laplace de la función de transferencia. Conocida la función ponderatriz \(g(t) \) puede hacerse el cálculo de la respuesta a una entrada cualquiera \(u(t) \) aplicando la propiedad (2.3):

\[y(t) = \mathcal{L}^{-1}[U(s)G(s)] = u(t) \otimes g(t) \]

es decir

\[y(t) = \int_0^t u(\tau)g(t-\tau)d\tau \]

Este método puede utilizarse cuando no resulta fácil obtener el modelo matemático del sistema y puede obtenerse la respuesta impulso para algún método experimental. También se utiliza en el análisis y diseño de los sistemas discretos.

Método de integración compleja

Consiste en aplicar la definición matemática de la transformada inversa de Laplace para hallar la respuesta:

\[y(t) = \mathcal{L}^{-1}[Y(s)] = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} Y(s)e^{st}ds \]

Aunque no se utiliza en la práctica del cálculo de la respuesta, por existir otros procedimientos más simples, la integración compleja constituye la base matemática de los métodos basados en el cálculo de raíces y residuos que vamos a ver a continuación.

Método de descomposición en fracciones simples

Como sabemos, si el sistema es lineal, monovariable y de parámetros concentrados, la función de transferencia \(G(s) \) es una función racional en \(s \):

\[G(s) = \frac{b(s)}{a(s)} \]

Si la entrada es \(u(t) \) y su transformada de Laplace es \(U(s) \), la expresión de la transformada de Laplace \(Y(s) \) de la salida, en el caso de condiciones iniciales nulas, es

\[Y(s) = U(s)G(s) = U(s)\frac{b_ms^m + \ldots + b_1s + b_0}{a_ns^n + \ldots + a_1s + a_0} \] (2.4)
es también una función racional de la forma

\[Y(s) = \frac{N(s)}{D(s)} \quad (2.5) \]

en donde \(N(s) \) y \(D(s) \) son polinomios en \(s \).

Dado que las funciones racionales admiten siempre una expansión en fracciones simples, la expresión (2.5) puede expresarse como suma de fracciones simples [Ogata 82, sec. 2.4]. Para ello hallaremos las raíces \(s_1, s_2, s_3, \ldots, s_n \) del denominador \(D(s) \). Si \(D(s) \) es mónico, \(Y(s) \) puede escribirse en la forma

\[Y(s) = \frac{N(s)}{(s-s_1)(s-s_2)(s-s_3)\ldots(s-s_n)} \quad (2.6) \]

Según que las raíces de \(D(s) \) sean simples (todas distintas) o múltiples, la expansión en fracciones simples de la expresión (2.5) es diferente.

Raíces simples

Si las raíces son simples (reales o complejas) la expresión (2.5) admite la siguiente descomposición en fracciones simples:

\[Y(s) = \frac{K_1}{s-s_1} + \frac{K_2}{s-s_2} + \frac{K_3}{s-s_3} + \ldots + \frac{K_n}{s-s_n} \quad (2.7) \]

en la cual los números \(K_1, K_2, K_3, \ldots, K_n \) se llaman residuos de la función \(Y(s) \) (ver Apéndice sobre Variable Compleja) y se obtienen por la fórmula

\[K_i = \left[\frac{N(s)}{D(s)} \right]_{s=s_i} \quad (2.8) \]

La obtención de la respuesta \(y(t) \) resulta trivial, ya que la función antitransformada de cada sumando de la expresión (2.7) es conocida. Por tanto

\[y(t) = K_1e^{s_1t} + K_2e^{s_2t} + K_3e^{s_3t} + \ldots + K_ne^{s_nt} \quad (2.9) \]

Si hay raíces complejas puede obtenerse una expresión alternativa a la (2.8) para cada par de raíces conjugadas. Sean \(s_i, s_j \) un par de raíces complejas conjugadas

\[s_i = \sigma + j\omega, \quad s_j = \sigma - j\omega \]

Puede verse fácilmente que los residuos correspondientes \(K_i, K_j \), calculados por la fórmula (2.8),

\[K_i = A + jB, \quad K_j = A - jB \]

son también complejos conjugados. Pasando a coordenadas polares, los residuos se escriben,\n
\[K_i = M\angle\theta, \quad K_j = M\angle-\theta \]

y en forma exponencial,

\[K_i = Me^{j\theta}, \quad K_j = Me^{-j\theta} \quad (2.10) \]

siendo \(M \) el módulo y \(\theta \) y el argumento de los residuos.

La parte \(y_c(t) \) de la respuesta, dada por (2.9), asociada a éste par de raíces complejas conjugadas es

\[y_c(t) = K_ie^{s_1t} + K_je^{s_2t} \]
Sustituyendo los valores de K_i y K_j dados por (2.10) queda

$$y_c(t) = Me^{j\theta} e^{(\sigma + j\omega) t} + Me^{-j\theta} e^{(\sigma - j\omega) t}$$

y operando,

$$y_c(t) = Me^{j\theta} e^{j(\omega t + \theta)} + Me^{-j\theta} e^{-j(\omega t + \theta)}$$

pero

$$e^{j(\omega t + \theta)} = \cos(\omega t + \theta) + j\sin(\omega t + \theta)$$

$$e^{-j(\omega t + \theta)} = \cos(\omega t + \theta) - j\sin(\omega t + \theta)$$

Sustituyendo en (2.11) resulta

$$y_c(t) = 2Me^{j\theta} \cos(\omega t + \theta)$$

Raíces múltiples

Si el polinomio $D(s)$ tiene raíces múltiples la expansión de $Y(s)$ en fracciones simples difiere de la dada por (2.7). Sea s_j una raíz repetida r veces (grado de multiplicidad r) y sean las otras raíces, s_1, s_2, \ldots, s_n, todas ellas simples. La expresión de $Y(s)$ es ahora

$$Y(s) = \frac{N(s)}{(s - s_1)(s - s_2)\ldots(s - s_j)^r\ldots(s - s_n)}$$

Entonces la expansión de $Y(s)$ en fracciones simples es de la forma

$$Y(s) = \frac{K_1}{s - s_1} + \ldots + \frac{K_{j_1}}{(s - s_j)^1} + \frac{K_{j_2}}{(s - s_j)^2} + \ldots + \frac{K_{j_r}}{(s - s_j)^r} + \ldots + \frac{K_n}{s - s_n}$$

(2.13)

Para hallar los residuos correspondientes a las raíces simples sigue siendo válida la expresión (2.8), mientras que para los residuos $K_{j_1}, K_{j_2}, \ldots, K_{j_n}$, asociados a la raíz múltiple s_j, deben aplicarse las fórmulas siguientes:

$$K_{j_r} = \left[\frac{N(s)}{D(s)} \right]_{s = s_j}$$

$$K_{j_{r-1}} = \left\{ \frac{d}{ds} \left[\frac{N(s)}{D(s)} \right]_{s = s_j} \right\}_{s = s_j}$$

$$\vdots$$

$$K_{j_{r-k}} = \frac{1}{K!} \left\{ \frac{d^k}{ds^k} \left[\frac{N(s)}{D(s)} \right]_{s = s_j} \right\}_{s = s_j}$$

$$\vdots$$

$$K_{j_1} = \frac{1}{(r - 1)!} \left\{ \frac{d^{r-1}}{ds^{r-1}} \left[\frac{N(s)}{D(s)} \right]_{s = s_j} \right\}_{s = s_j}$$

(2.14)

La respuesta $y(t)$, antitransformada de Laplace de la expresión (2.13), es:

$$y(t) = K_1e^{s_1t} + K_2e^{s_2t} + K_3e^{s_3t} + \ldots + K_ne^{s_nt} + K_{j_1}e^{s_1t} + tK_{j_2}e^{s_2t} + \ldots + t^{r-1}K_{j_r}e^{s_jt}$$

(2.15)
Capítulo 2. Respuesta temporal

Cuando el polinomio denominador $D(s)$ de la función $Y(s)$ es de segundo grado, las raíces se obtienen por la fórmula de la ecuación de segundo grado. Si es de grado superior al segundo puede aplicarse el método de Ruffini, cuando las raíces son enteras, pero, en general, se debe recurrir al empleo de métodos numéricos. Dada al actual disponibilidad de ordenadores personales, el cálculo de las raíces por métodos numéricos es quizá el método adecuado, ya que, además, pueden utilizarse los recursos del computador para efectuar otros cálculos, tales como residuos, respuesta temporal etc., así como para realizar todo tipo de representaciones gráficas.

2.4. Sistema de primer orden

Sabemos que el orden de un sistema con función de transferencia $G(s) = b(s)/a(s)$ es el grado del polinomio $a(s)$ denominador de $G(s)$ [Ogata 82, sec. 6.3]. La función de transferencia de un sistema de primer orden estrictamente causal se puede escribir en la forma

$$G(s) = \frac{A}{s + a}$$

Su diagrama de bloque puede verse en la figura 2.8. Vamos a analizar dos casos, correspondientes a entrada impulso y a entrada escalón, con condiciones iniciales nulas.

Entrada impulso. Respuesta impulsional

Si $u(t) = \delta(t)$, impulso de Dirac, hallamos su transformada de Laplace $U(s)$:

$$U(s) = [\delta(t)] = 1$$

por tanto $Y(s)$, transformada de Laplace de su salida, es

$$Y(s) = U(s)G(s) = \frac{A}{s + a}$$

La respuesta temporal, dada por (2.17) es

$$y(t) = Ae^{-at} = Ae^{-t/\tau}$$

El parámetro $\tau = 1/a$ se llama constante de tiempo del sistema de primer orden. En la figura 2.9 se ha representado la respuesta impulsional de un sistema de primer orden.
2.4. SISTEMA DE PRIMER ORDEN

Entrada escalón unitario

Si la entrada al sistema es el escalón unitario, \(u(t) = 1(t) \), su transformada de Laplace es

\[U(s) = \mathcal{L}[1(t)] = \frac{1}{s} \]

por tanto \(Y(s) \), transformada de Laplace de su salida es

\[Y(s) = U(s)G(s) = \frac{A}{s(s + a)} \]

Para hallar la respuesta temporal a partir de

\[Y(s) = \frac{A}{s(s + a)} = \frac{K_1}{s} + \frac{K_2}{s + a} \]

hemos de calcular los residuos mediante la fórmula (2.16):

\[K_1 = \left[\frac{A}{s(s + a)}(s - 0) \right]_{s=0} = \frac{A}{a} \]

\[K_2 = \left[\frac{A}{s(s + a)}(s + a) \right]_{s=-a} = -\frac{A}{a} \]

Una vez hallados los residuos, la respuesta dada (2.17) es

\[y(t) = \frac{A}{a} - \frac{A}{a}e^{-at} \]

En la figura 2.10 se ha representado la respuesta a una entrada escalón de un sistema de primer orden.
Cuando las condiciones iniciales no son nulas, no es aplicable la ecuación (2.4) sino que hemos de recurrir a la (1.7). En el caso del sistema de primer orden con \(m = 0, n = 1 \), la ecuación diferencial del sistema (2.4) se escribe,

\[
a_1 \dot{y} + a_0 y = b_0 u
\]

Aplicando la ecuación (1.7), tenemos

\[
Y(s) = U(s) \left(\frac{b_0}{a_1 s + a_0} + \frac{a_1 y(0)}{a_1 s + a_0} \right)
\]

Dividiendo numerador y denominador de (2.44) por \(a_1 \) y haciendo \(b_0/a_1 = A, a_0/a_1 = a \) queda,

\[
Y(s) = U(s) \frac{A}{s + a} + \frac{y(0)}{s + a}
\]

A partir de esta ecuación se puede determinar fácilmente \(y(t) \) conociendo \(u(t) \).

2.5. Sistema de segundo orden

El polinomio característico de un sistema de segundo orden es de segundo grado [Ogata 82, sec. 6.4]. La función de transferencia tiene la forma para \(m = 1, n = 2 \):

\[
G(s) = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0}
\]

Vamos a estudiar en primer lugar el caso en que \(b = 0 \), cuya transmittancia se suele expresar:

\[
G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}
\]
2.5. SISTEMA DE SEGUNDO ORDEN

Figura 2.11: Diagrama de bloque de un sistema de segundo orden

siendo \(\omega_n^2 = a_0/a_2 \), \(2\xi\omega_n = a_1/a_2 \). El parámetro \(\omega_n \) se llama frecuencia natural del sistema mientras que \(\xi \) se denomina coeficiente de amortiguamiento. Su diagrama de bloque puede verse en la figura 2.11. Analizaremos dos casos, correspondientes a entrada impulso y a entrada escalón, con condiciones iniciales nulas.

Entrada impulso. Respuesta impulsonal

Si \(u(t) = \delta(t) \), impulso de Dirac, hallamos su transformada de Laplace \(U(s) \):

\[
U(s) = \mathcal{L}[\delta(t)] = 1
\]

por tanto \(Y(s) \), transformada de Laplace de su salida es

\[
Y(s) = U(s)G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}
\]

Las raíces de la ecuación característica son:

\[
s_{1,2} = -\xi\omega_n \pm j\omega_n\sqrt{1 - \xi^2}
\]

Para hallar los residuos aplicamos la fórmula (2.16):

\[
K_1 = \left[\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} \right]_{s=s_1}
\]

de donde resulta

\[
K_1 = \left[\frac{\omega_n^2}{s + \xi\omega_n + j\omega_n\sqrt{1 - \xi^2}} \right]_{s=s_1} = \frac{-j\omega_n}{2\sqrt{1 - \xi^2}}
\]

Del mismo modo

\[
K_2 = \left[\frac{\omega_n^2}{s + \xi\omega_n - j\omega_n\sqrt{1 - \xi^2}} \right]_{s=s_1} = \frac{j\omega_n}{2\sqrt{1 - \xi^2}}
\]

En coordenadas polares,

\[
M = \frac{\omega_n}{2\sqrt{1 - \xi^2}}, \quad \theta = -\frac{\pi}{2}
\]

con lo que los residuos se expresan

\[
K_1 = \frac{\omega_n}{2\sqrt{1 - \xi^2}}, \quad K_2 = \mathrm{cota} \frac{\pi}{2}
\]
y la respuesta temporal se obtiene ahora aplicando la fórmula (2.12):

\[y(t) = \frac{\omega_n}{\sqrt{1-\xi^2}} e^{-\xi\omega_n t} \sin \left(\omega_n \sqrt{1-\xi^2} \right) t \]

En la figura 2.12 se ha representado la respuesta impulsional del sistema de segundo orden.

![Figura 2.12: Respuesta impulsional del sistema de 2° orden](image-url)

Entrada escalón unitario

Si la entrada al sistema es el escalón unitario, \(u(t) = 1(t) \), su transformada de Laplace \(U(s) \) es,

\[U(s) = \mathcal{L}[1(t)] = \frac{1}{s} \]

por tanto \(Y(s) \), transformada de Laplace de su salida es,

\[Y(s) = U(s)G(s) = \frac{\omega_n^2}{s(s^2 + 2\xi\omega_ns + \omega_n^2)} \]

Las raíces de la ecuación característica son ahora,

\[s_1 = 0, \quad s_{2,3} = -\xi\omega_n \pm j\omega_n \sqrt{1-\xi^2} \]

Calculemos los residuos, por la fórmula (2.16):

\[K_1 = \left[\frac{\omega_n^2}{s(s^2 + 2\xi\omega_ns + \omega_n^2)}(s - 0) \right]_{s=0} = 1 \]

\[K_2 = \left[\frac{\omega_n^2}{s(s^2 + 2\xi\omega_ns + \omega_n^2)}(s - s_2) \right]_{s=s_2} = -\frac{1}{2} + \frac{j\xi}{2\sqrt{1-\xi^2}} \]

\[K_3 = \left[\frac{\omega_n^2}{s(s^2 + 2\xi\omega_ns + \omega_n^2)}(s - s_3) \right]_{s=s_3} = -\frac{1}{2} - \frac{j\xi}{2\sqrt{1-\xi^2}} \]
2.5. SISTEMA DE SEGUNDO ORDEN

El módulo y el argumento de K_2 son

$$M = \frac{1}{2} \frac{1}{\sqrt{1 - \xi^2}}$$

$$\theta = -\arctan \frac{\xi}{\sqrt{1 - \xi^2}}$$

En coordenadas polares,

$$K_2 = M \angle \theta, \quad K_3 = M \angle -\theta$$

La respuesta temporal se obtiene aplicando las fórmulas (2.12) y (2.9):

$$y(t) = 1 + \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \cos(\omega_n \sqrt{1 - \xi^2} t + \theta))$$

La figura 2.13 muestra la situación de las raíces complejas conjugadas.

A veces interesa indicar la respuesta en función del ángulo correspondiente a las raíces complejas conjugadas. Dichas raíces son

$$s_{2,3} = -\xi \omega_n \pm j \omega_n \sqrt{1 - \xi^2}$$

de donde

$$\phi = -\arctan \frac{\sqrt{1 - \xi^2}}{\xi}$$

Pero como

$$\theta = -\arctan \frac{\xi}{\sqrt{1 - \xi^2}}$$

ha de ser

$$\theta = 90^\circ - \phi.$$

Si introducimos una nueva variable α, tal que $\alpha + \phi = 180^\circ$, tenemos

$$\theta = 90 - \phi = 90 - (180 - \alpha) = \alpha - 90.$$
y ello nos permite expresar la respuesta en función de α.

\[
y(t) = 1 + \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \cos(\omega_n \sqrt{1 - \xi^2} t + \alpha - 90^\circ))
\]

\[
= 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin (\omega_n \sqrt{1 - \xi^2} t + \alpha).
\]

Es interesante la interpretación gráfica de la figura 2.13. Las raíces s_2 y s_3 se hallan situadas en un círculo de radio w_n, formando ángulos ϕ y $-\phi$ con el eje real; el ángulo α es el suplementario de ϕ.

En la figura 2.14 se ha representado la respuesta a una entrada escalón del sistema de segundo orden. Si el sistema tiene condiciones iniciales no nulas se procede de igual modo que el indicado para el sistema de primer orden, utilizando la ecuación (1.11), y hallando la antitransformada de Laplace de la expresión resultante.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figura214}
\caption{Respuesta al escalón del sistema de segundo orden}
\end{figure}

Elemento de retraso en el tiempo

Es un componente que provoca el retraso de una señal en el tiempo. En concreto, si $u(t)$ es la señal de entrada al elemento de retraso, entonces la salida $y(t)$ es idéntica a la entrada $u(t)$ aunque retrasada un tiempo dado T. Es decir

\[
y(t) = u(t - T) \text{1}(t - T)
\]

¿Cuál será su función de transferencia?
Por el teorema de traslación en el tiempo de la transformada de Laplace sabemos que
\[\mathcal{L}[f(t-T)1(t-T)] = e^{-sT}F(s), \]
en donde \(\mathcal{L}(f(t)) = F(s) \), así que ha de ser
\[\mathcal{L}(y(t)) = \mathcal{L}(u(t-T)1(t-T)) = e^{-sT}U(s), \]
por lo que la función de transferencia de este elemento es
\[R_T(s) = e^{-sT}. \]

El elemento de retraso en el tiempo aparece frecuentemente en la práctica y hace que el sistema deje de ser lineal y que su control resulte más difícil. Uno de los ejemplos más típicos es un tubo por el que circula un fluido que transporta una señal de temperatura. En la figura 2.16 tenemos el esquema de un sistema de control de calefacción. Funciona así: si la medida \(\theta_m \) que da el termómetro es menor que la temperatura de referencia \(\theta_{ref} \) (previamente fijada) entonces el controlador aumenta la señal eléctrica \(v_c \) que envía a válvula y ésta se abre un poco más; en cambio, si \(\theta > \theta_{ref} \), disminuye dicha señal cerrando un poco la válvula y, si son iguales, \(\theta = \theta_{ref} \) la señal que envía no cambia y la válvula permanece en la misma posición. Se trata, pues, de un sistema de control en lazo cerrado que responde al diagrama de bloques de la figura 2.15.

![Diagrama de bloques de control de temperatura](image)

Figura 2.15: Sistema de control de temperatura

Respuesta de los sistemas de orden superior

El método general de obtener la expresión de la respuesta temporal en sistemas de orden superior es el indicado en la sección 2.3. El cálculo de raíces y residuos puede resultar tedioso para sistemas de orden superior al segundo, por lo que se hace casi imprescindible el empleo de un computador.

La respuesta temporal de un sistema de orden superior consta de una serie de sumandos, tal y como aparece en las expresiones (2.13) y (2.15). Como puede verse, está formada por una superposición de términos asociados a los polos de la ecuación característica. Puesto que para sistemas estables los términos exponenciales deben ser decrecientes con el tiempo, algunos de ellos habrán quedado casi totalmente amortiguados al transcurrir un pequeño intervalo de tiempo, mientras que otros permanecerán durante tiempos más largos. Los polos correspondientes a los términos que más tiempo permanecen influyendo en la respuesta se llaman polos dominantes. Son siempre los términos asociados a las raíces más próximas al eje imaginario.

A menudo resulta conveniente hacer un análisis simplificado de los sistemas de orden superior. Este análisis suele consistir en la sustitución de la transmitancia del sistema por otra
cuya ecuación característica sea de orden inferior, segundo o tercero generalmente, con raíces situadas en los polos dominantes de la transmitancia original. Por este motivo, el conocimiento del comportamiento del sistema de segundo orden resulta de importancia transcendental en el análisis y diseño de los sistemas [Ogata 82, sec. 6.5].

2.6. **Respuesta del modelo de estado**

Se trata de obtener la expresión de la respuesta $y(t)$ de un sistema dinámico dado, conociendo las matrices A, B, C, D que constituyen su modelo de estado

$$
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
$$

así como la entrada o control del sistema, $u(t)$ [Ogata 82, sec. 14.5]. La solución de la ecuación diferencial del vector de estado

$$
\dot{x}(t) = Ax(t) + Bu(t)
$$

se puede obtener por un procedimiento similar al utilizado para resolver una ecuación diferencial lineal de primer orden de la forma

$$
\dot{x}(t) = ax(t) + bu(t)
$$

en la que $x(t)$ y $u(t)$ son funciones del tiempo. Por ello resolveremos primeramente esta ecuación. Tomando la transformada de Laplace tenemos:

$$
\begin{align*}
& sX(s) - x(0) = aX(s) + bU(s) \\
& X(s)(s-a) = x(0) + bU(s) \\
& X(s) = \frac{x(0)}{s-a} + \frac{b}{s-a}U(s)
\end{align*}
$$
La transformada inversa \mathcal{L}^{-1} se obtiene aplicando el teorema de convolución:

$$\mathcal{L}^{-1}[F_1(s)F_2(s)] = \int_0^t f_1(t-\tau)f_2(\tau)d\tau$$

Tomando $F_1(s) = 1/(s-a)$ y $F_2(s) = bU(s)$ obtenemos

$$x(t) = e^{at}x(0) + \int_0^te^{a(t-\tau)}bu(\tau)d\tau$$ \hspace{1cm} (2.17)

Intuitivamente podemos esperar que la solución de la ecuación del vector de estado (2.16) tenga una forma parecida a (2.17) Para obtenerla utilizaremos la función exponencial matricial que se define como:

$$e^X = \exp(X) = I_n + X + \frac{X^2}{2!} + \ldots + \frac{X^k}{k!} = \sum_{k=0}^{\infty} \frac{X^k}{k!}$$

en donde $X \in \mathbb{C}^{n \times n}$ e I_n es la matriz identidad de orden n. Se sabe por la teoría de funciones de matrices que esta serie converge para todo t finito y para toda matriz cuadrada A finita.

Ahora, para resolver la ecuación diferencial del vector de estado (2.16), utilizaremos el mismo método que nos ha servido para hallar la solución de la ecuación diferencial de primer orden. Aplicando la transformada de Laplace al sistema

$$\dot{x}(t) = Ax(t) + Bu(t)$$

obtenemos

$$X(s) = (sI_n - A)^{-1}x(0) + (sI_n - A)^{-1}BU(s) \hspace{1cm} (2.18)$$

Para hallar la antitransformada $x(t)$ supongamos primero que $u(t) = 0$. Entonces tenemos

$$X(s) = (sI_n - A)^{-1}x(0)$$

$$= \frac{1}{s} \left(I_n - \frac{A}{s} \right)^{-1}x(0)$$

$$= \frac{1}{s} \left[I_n + \frac{A}{s} + \frac{A^2}{s^2} + \ldots \right] x(0)$$

La solución $x(t)$ buscada se obtiene hallando la transformada inversa de esta serie:

$$x(t) = 1(t) \left[I_n + At + \frac{A^2t^2}{2!} + \ldots \right] x(0)$$

$$= \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = e^{At}$$

Supongamos ahora el caso general, es decir $u(t) \neq 0$. Aplicando el teorema de convolución se deduce de (2.18) que

$$x(t) = e^{At}x(0) + \int_0^te^{A(t-\tau)}Bu(\tau)d\tau \hspace{1cm} (2.19)$$

que es la solución de la ecuación del vector de estado.
CAPÍTULO 2. RESPUESTA TEMPORAL

Una vez conocida $x(t)$, la respuesta temporal $y(t)$ del sistema se obtiene inmediatamente de (2.16) por sustitución:

$$y(t) = Cx(t) + Du(t)$$

Otra forma de obtener la solución del modelo de estado

$$\dot{x}(t) = Ax(t) + Bu(t)$$

es la siguiente. Denotemos por $x(t)$ al vector de estado, es decir

$$x(t) = [x_1(t), \ldots , x_n(t)]^T$$

y por $\int_0^t x(\tau)d\tau$ a su integral en t:

$$\int_0^t x(\tau)d\tau = [\int_0^t x_1(\tau)d\tau, \ldots , \int_0^t x_n(\tau)d\tau]$$

Consideremos primero el caso simplificado en que $A = 0$. Entonces la ecuación de estado queda reducida a

$$\dot{x}(t) = Bu(t)$$

Para resolverla vamos a realizar el cambio de variable

$$z(t) = e^{-At}x(t)$$ (2.20)

Derivando esta ecuación tenemos

$$\dot{z}(t) = -Ae^{-At}x(t) + e^{-At}\dot{x}(t)$$

$$= -Ae^{-At}x(t) + e^{-At}(Ax(t) + Bu(t))$$

$$= e^{-At}Bu(t)$$

Integrando esta ecuación diferencial obtenemos

$$z(t) = z(0) + \int_0^t e^{-A\tau}Bu(\tau)d\tau$$

y, deshaciendo el cambio (2.20),

$$e^{-At}x(t) = z(0) + \int_0^t e^{-A\tau}Bu(\tau)d\tau$$

ya que $z(0) = e^{-At}x(0) = z(0)$. Despejando $x(t)$ obtenemos

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

que es la solución buscada.

2.6.1. Análisis Modal

Hemos obtenido una fórmula que nos permite hallar la solución $x(t)$ del modelo de estado, dadas las matrices A y B y el valor $x(0)$ de condiciones iniciales. Vamos a estudiar ahora las relaciones que existen entre ciertas propiedades de los datos A, B y $x(0)$ y de la solución $x(t)$. Para ello hemos de repasar previamente algunos conceptos de Algebra Lineal.
2.6. RESPUESTA DEL MODELO DE ESTADO

Dependencia lineal

Vamos a suponer que tenemos un sistema de \(n \) vectores columna

\[
\begin{bmatrix}
 a_{11} \\
 a_{21} \\
 \vdots \\
 a_{m1}
\end{bmatrix}, \quad
\begin{bmatrix}
 a_{12} \\
 a_{22} \\
 \vdots \\
 a_{m2}
\end{bmatrix}, \quad \ldots, \quad
\begin{bmatrix}
 a_{1n} \\
 a_{2n} \\
 \vdots \\
 a_{mn}
\end{bmatrix}
\]
pertenecientes al espacio vectorial \(\mathbb{C}^m \) (a veces puede ser \(\mathbb{C}^m \)) y \(n \) escalares \(x_1, \ldots, x_n \in \mathbb{C} \). La operación

\[
a_1x_1 + a_2x_2 + \ldots + a_nx_n = \begin{bmatrix}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n
\end{bmatrix} = \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}
\]

se denomina combinación lineal de \(a_1, a_2, \ldots, a_n \). En forma matricial se escribe

\[
Ax = b
\]
en donde \(A \in \mathbb{C}^{m \times n} \), \(x \in \mathbb{C}^n \), \(b \in \mathbb{C}^m \). Si, dados \(a_1, \ldots, a_n \), existe un conjunto de escalares \(x_1, \ldots, x_n \), no todos nulos, tales que los elementos de la combinación lineal \(b_1, b_2, \ldots, b_m \), son todos nulos, entonces se dice que los vectores \(a_1, a_2, \ldots, a_n \) son linealmente dependientes. En caso contrario se dice que son linealmente independientes.

Un concepto estrechamente relacionado con la dependencia lineal es el de **rango**. Se define el rango de una matriz \(A = [a_{ij}] \), como el número máximo de filas (o de columnas) linealmente independientes. Resulta evidente que si disponemos de algún procedimiento para calcular el rango de una matriz podemos averiguar si un sistema de vectores es linealmente independiente o no lo es.

Recordemos que la dimensión de un espacio vectorial \(V \) es el número máximo de vectores linealmente independientes en \(V \). Si en un espacio vectorial, por ejemplo en \(\mathbb{C}^n \), tenemos \(n \) vectores \(e_1, e_2, \ldots, e_n \) linealmente independientes, éstos forman una base del espacio vectorial.

Valores propios y vectores propios

Sea \(A \) una aplicación lineal, dada en cierta base por la matriz cuadrada \(A \in \mathbb{C}^{n \times n} \), en el espacio vectorial \(\mathbb{C}^n \).

1. Sea \(\lambda \in \mathbb{C} \). Se dice que \(\lambda \) es un valor propio de \(A \) si existe un vector \(x \in \mathbb{C}^n \), \(x \neq 0 \), tal que

\[
Ax = \lambda x
\]

Es importante remarcar que \(x \) ha de ser no nulo \((x \neq 0) \) ya que de otro modo todo elemento \(\lambda \in \mathbb{C} \) sería un vector propio. Los valores propios son las raíces \(\lambda_i, i = 1, \ldots, n \) de la ecuación \(|\lambda I_n - A| = 0 \)

2. Sea \(x \in \mathbb{C}^n \). Se dice que \(x \) es un **vector propio** de \(A \) si existe un escalar \(\lambda \in \mathbb{C} \) tal que

\[
Ax = \lambda x
\]

Cada vector propio \(w_i \) es la solución \(x \) del sistema de ecuaciones \(Ax = \lambda_i x \), en donde \(\lambda_i \) es un valor propio, para \(i = 1, \ldots, n \). Los vectores propios \(w_1, \ldots, w_n \) se suelen denominar **vectores propios por la derecha**.
Diagonalización

Otro resultado conocido importante es que si una aplicación lineal $A: \mathbb{C}^n \to \mathbb{C}^n$ tiene n valores propios distintos $\lambda_1, \lambda_2, \ldots, \lambda_n$, entonces tiene n vectores propios w_1, w_2, \ldots, w_n linealmente independientes. En este caso la matriz $W = [w_1, w_2, \ldots, w_n]$, cuyas columnas son los vectores propios, es invertible y entonces se verifica

$$W^{-1}AW = W^{-1}[w_1, w_2, \ldots, w_n]AW = W^{-1}[\lambda_1 w_1, \lambda_2 w_2, \ldots, \lambda_n w_n] = \text{diag}[\lambda_1, \lambda_2, \ldots, \lambda_n] := \Lambda$$

es decir que la matriz A es semejante a una matriz diagonal Λ.

Las filas v_1, v_2, \ldots, v_n de la matriz $V = W^{-1}$ suelen denominarse vectores propios por la izquierda ya que, según acabamos de ver, $W^{-1}AW = \Lambda = [\lambda_1, \lambda_2, \ldots, \lambda_n] y, por tanto, W^{-1}A = \Lambda W^{-1}$ es decir $VA = V\lambda$.

Respuesta espectral

Veamos ahora cómo podemos caracterizar la respuesta del sistema libre

$$\dot{x} = Ax, \quad x \in \mathbb{C}^n, A \in \mathbb{C}^{n \times n} \quad (2.21)$$

en relación a los valores propios y vectores propios de la matriz A. Vamos a suponer que los valores propios $\lambda_1, \lambda_2, \ldots, \lambda_n$ de A sean todos distintos. En este caso, sus vectores propios (por la derecha), w_1, w_2, \ldots, w_n son linealmente independientes y, por tanto, forman una base de \mathbb{C}^n. Entonces podemos expresar la solución $x(t)$ de (2.21), por pertenecer a \mathbb{C}^n, como una combinación lineal de los vectores de la base, es decir, de la forma

$$x(t) = x_1(t)w_1 + x_2(t)w_2 + \ldots + x_n(t)w_n \quad (2.22)$$

en donde $x_1(t), \ldots, x_n(t) \in \mathbb{C}$. Derivando esta ecuación y sustituyendo en (2.21) queda

$$\dot{x}_1(t)w_1 + \dot{x}_2(t)w_2 + \ldots + \dot{x}_n(t)w_n =$$

$$= A(x_1(t)w_1 + x_2(t)w_2 + \ldots + x_n(t)w_n)$$

$$= \lambda_1 x_1(t)w_1 + \lambda_2 x_2(t)w_2 + \ldots + \lambda_n x_n(t)w_n$$

de donde, por ser w_1, \ldots, w_n linealmente independientes, se deduce que

$$\dot{x}_1(t) = \lambda_1 x_1(t)$$

$$\dot{x}_2(t) = \lambda_2 x_2(t)$$

$$\vdots$$

$$\dot{x}_n(t) = \lambda_n x_n(t)$$

Las soluciones de este sistema de ecuaciones, que se obtienen de forma inmediata, son

$$x_i(t) = x_i(0)e^{\lambda_i t}, \quad i = 1, 2, \ldots, n$$

Sustituyendo en (2.22) obtenemos como solución

$$x(t) = \sum_{i=1}^{n} x_i(0)e^{\lambda_i t}w_i$$
Capítulo 3

Respuesta de frecuencia

3.1. Respuesta de frecuencia

Se define la respuesta de frecuencia de un sistema como la respuesta en estado estacionario ante una entrada sinusoidal. Los métodos de análisis y diseño de sistemas basados en la respuesta de frecuencia han sido y son muy utilizados por varias razones. En primer lugar, la facilidad de obtención de la respuesta y estabilidad de los sistemas por métodos gráficos suponía una ventaja, dada la escasa disponibilidad de los computadores digitales, sobre los complicados cálculos con números complejos exigidos por los métodos de respuesta temporal y del lugar de las raíces. En segundo lugar, los métodos de respuesta de frecuencia pueden servir para el análisis y diseño de sistemas cuya función de transferencia se desconoce, por sencillas mediciones de amplitud y fase en la entrada y en la salida, pudiendo incluso determinarse la función de transferencia. Y en tercer lugar por ser muchas de las variables de entrada a los sistemas de naturaleza sinusoidal u ondulatoria, siendo en estos casos necesario el conocimiento de la respuesta de frecuencia [Ogata 82].

\[G(s) \]

\[\begin{align*}
A \sin(\omega t) & \quad G(s) \\
y(t) & \\
\end{align*} \]

Figura 3.1: Sistema con entrada sinusoidal

3.2. Respuesta de un sistema a entrada sinusoidal

Vamos a considerar un sistema lineal, monovariable y estable, con función de transferencia \(G(s) \), representado en la figura 3.1, al cual se aplica una entrada sinusoidal.

Para hallar la respuesta aplicamos el método de descomposición en fracciones simples basado en el cálculo de las raíces de la ecuación característica y de los residuos. En primer lugar, dada la función de entrada

\[u(t) = A \sin \omega t \]

obtenemos

\[U(s) = \mathcal{L}[u(t)] = \frac{A\omega}{s^2 + \omega^2} \]

45
Por tanto la transformada de Laplace de la respuesta es

\[Y(s) = U(s)G(s) = \frac{A\omega}{s^2 + \omega^2}G(s) \]

Hallando su transformada inversa obtenemos la respuesta temporal:

\[y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}\left[\frac{A\omega}{s^2 + \omega^2}G(s) \right] \]

Por tratarse de un sistema lineal, \(G(s) \) es una función racional que se puede expresar como cociente entre el polinomio \(N(s) \) y el polinomio \(D(s) \):

\[G(s) = \frac{N(s)}{D(s)} \]

Las raíces del denominador de \(Y(s) \) serán las del factor \(s^2 + \omega^2 \) junto con las de \(D(s) \), es decir,

\[s_1 = j\omega, \ s_2 = -j\omega, \ s_3, s_4, \ldots \]

y, por lo tanto, \(Y(s) \) puede descomponerse en fracciones simples de la forma

\[Y(s) = \frac{K_1}{s - j\omega} + \frac{K_2}{s + j\omega} + \frac{K_3}{s - s_3} + \frac{K_4}{s - s_4} + \ldots \] (3.2)

Para hallar \(K_1 \) y \(K_2 \) aplicamos la fórmula (2.8) del capítulo 5:

\[K_1 = \left[\frac{A\omega}{s^2 + \omega^2}G(s)(s - j\omega) \right]_{s=j\omega} = \frac{AG(j\omega)}{2j} \] (3.3)

\[K_2 = \left[\frac{A\omega}{s^2 + \omega^2G(s)(s + j\omega)} \right]_{s=-j\omega} = \frac{AG(-j\omega)}{-2j} \] (3.4)

Sustituyendo (3.3) y (3.4) en (3.2) queda

\[Y(s) = \frac{AG(j\omega)}{2j}(s - j\omega) + \frac{AG(-j\omega)}{-2j}(s + j\omega) + \frac{K_3}{s - s_3} + \frac{K_4}{s - s_4} + \ldots \]

La transformada inversa de Laplace de esta función es la respuesta temporal.

\[y(t) = \frac{AG(j\omega)}{2j} e^{j\omega t} - \frac{AG(-j\omega)}{2j} e^{-j\omega t} + K_3e^{s_3t} + K_4e^{s_4t} + \ldots \] (3.5)

Obsérvese que, por tratarse de un sistema estable, las raíces correspondientes a la ecuación característica \(D(s) = 0 \) estarán en el semiplano complejo izquierdo y, por tanto, los sumandos \(K_3e^{s_3t} + K_4e^{s_4t} + \ldots \) de la respuesta tenderán a cero en estado estacionario.

\(G(j\omega) \) es una cantidad compleja que en notación exponencial se puede expresar

\[G(j\omega) = Me^{j\phi} \] (3.6)

siendo \(M = |G(j\omega)| \) y \(\phi = \angle G(j\omega) \). Del mismo modo,

\[G(-j\omega) = Me^{-j\phi} \] (3.7)
Sustituyendo (3.6) y (3.7) en (3.5) la expresión de la respuesta en estado estacionario y queda

\[y_{ss}(t) = \frac{AMe^{j\phi}}{2j} e^{j\omega t} - \frac{AMe^{-j\phi}}{2j} e^{-j\omega t} = AM \frac{e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)}}{2j} \]

o bien

\[y_{ss} = AM \sin(\omega t + \phi) \quad (3.8) \]

La respuesta de un sistema lineal a una entrada sinusoidal es también sinusoidal, de la misma frecuencia, con una amplitud igual a la de la entrada multiplicada por \(M \), y con un de fase \(\phi \) respecto a la entrada, siendo \(M \) el módulo y \(\phi \) el argumento de \(G(j\omega) \).

Mediante la fórmula anterior se puede obtener la respuesta de un sistema a una entrada \(u(t) = A \sin \omega t \), para cualquier valor de \(\omega \). Para ello, para una \(\omega \) dada, se determinan los valores de \(M \) y de \(\phi \) y se sustituyen en (3.8). Para evitar los cálculos con números complejos se desarrollaron métodos gráficos para hallar \(M \) y \(\phi \) en función de \(\omega \) por medio de diagramas. Los más empleados son los diagramas de Nyquist y de Bode.

3.3. Diagramas de Nyquist

El diagrama de Nyquist es el lugar geométrico que describe el vector \(G(j\omega) \) en el plano complejo al variar \(\omega \) entre \(-\infty \) y \(\infty \) [Ôgata 82, sec. 9.3]. Aunque la frecuencia negativa no tiene significado físico, sí que tiene un significado matemático que permite formular el criterio de estabilidad de Nyquist.

Un método básico para confeccionar el diagrama de Nyquist consiste en escribir una tabla en la que para cada valor de \(\omega \) calculemos los valores del módulo \(M \) y del argumento \(\phi \) de \(G(j\omega) \), o bien la parte real y la parte imaginaria. Por ejemplo, para la función

\[G(s) = \frac{1}{s + 1} \]

sustituimos \(s \) por \(j\omega \) y damos a \(\omega \) los valores \(0, 0.5, 1, 1.5, \ldots \), y calculamos \(M = |G(j\omega)| \) y \(\phi = \angle G(j\omega) \), colocándolos en la tabla 3.1.

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>(M)</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.894</td>
<td>-26.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.707</td>
<td>-45.0</td>
</tr>
<tr>
<td>1.5</td>
<td>0.555</td>
<td>-56.3</td>
</tr>
<tr>
<td>2.0</td>
<td>0.447</td>
<td>-63.4</td>
</tr>
<tr>
<td>3.0</td>
<td>0.316</td>
<td>-71.6</td>
</tr>
<tr>
<td>5.0</td>
<td>0.196</td>
<td>-78.7</td>
</tr>
<tr>
<td>10.0</td>
<td>0.100</td>
<td>-84.3</td>
</tr>
</tbody>
</table>

Cuadro 3.1: Respuesta de frecuencia

Con la ayuda de esta tabla se traza fácilmente el diagrama de Nyquist, representado en la figura 3.2, dibujando en el plano complejo cada uno de los extremos de los vectores \(G(j\omega) \) dados por la tabla en coordenadas polares que, como puede apreciarse, es una circunferencia.

En la figura 3.2 se muestran los diagramas de Nyquist de diferentes sistemas definidos por sus funciones de transferencia.
CAPÍTULO 3. RESPUESTA DE FRECUENCIA

Los diagramas de Nyquist no son eficaces para efectuar medidas del módulo y fase de $G(j\omega)$, dada la dificultad de determinar con precisión el valor de ω que corresponde a cada punto de la curva. Sin embargo pueden servir para identificar las funciones de transferencia de algunos sistemas por comparación de la forma de sus gráficas de Nyquist con la de otras teóricas previamente trazadas. Además, muestran gráficamente la estabilidad de los sistemas de control, por aplicación del criterio de Nyquist, según el número de veces que la curva circunde al punto $(-1 + 0j)$ del plano complejo.

3.4. Diagramas de Bode

Los diagramas de Bode representan el vector $G(j\omega)$ en dos gráficas, una para el módulo y otra para la fase. En la primera se representa el módulo $M = G(j\omega)$ en decibelios, en función del logaritmo decimal de ω, y en la segunda la fase, $\phi = G(j\omega)$ también en función de log ω [Ogata 82, sec. 9.2].

Como vamos a ver, el trazado de los diagramas de Bode se simplifica por utilizar coordenadas logarítmicas. Supongamos que las raíces del numerador (ceros) de $G(s)$ son z_1, z_2, \ldots, z_m y que las del denominador (polos) son p_1, p_2, \ldots, p_n. $G(s)$ puede entonces expresarse de la forma

$$G(s) = A \frac{(s - z_1)(s - z_2)\ldots(s - z_m)}{(s - p_1)(s - p_2)\ldots(s - p_n)}$$

Para hallar la respuesta de frecuencia sustituimos s por $j\omega$ en (3.9).

$$G(j\omega) = A \frac{(j\omega - z_1)(j\omega - z_2)\ldots(j\omega - z_m)}{(j\omega - p_1)(j\omega - p_2)\ldots(j\omega - p_n)}$$

Calculemos el módulo y el argumento de esta expresión.

$$M = |G(j\omega)| = A \left| \frac{j\omega - z_1}{j\omega - p_1} \right| \left| \frac{j\omega - z_2}{j\omega - p_2} \right| \ldots \left| \frac{j\omega - z_m}{j\omega - p_n} \right|$$
o, de forma más conveniente para los diagramas,

\[G(j\omega) = K \left| \frac{j\omega - z_1 + 1}{j\omega - p_1 + 1} \right| \left| \frac{j\omega - z_2 + 1}{j\omega - p_2 + 1} \right| \ldots \left| \frac{j\omega - z_m + 1}{j\omega - p_n + 1} \right| \]

(3.12)

en donde \(K \) es la ganancia estática de \(G(s) \)

\[K = A \left(-z_1 \right) \left(-z_2 \right) \ldots \left(-z_m \right) \left(-p_1 \right) \left(-p_2 \right) \ldots \left(-p_n \right) \]

El argumento o fase de \(G(j\omega) \) vale

\[\phi = \angle G(j\omega) = \angle (j\omega - z_1) + \angle (j\omega - z_2) + \ldots + \angle (j\omega - z_m) - \angle (j\omega - p_1) - \angle (j\omega - p_2) - \ldots - \angle (j\omega - p_n) \]

(3.13)

En los diagramas de Bode, el módulo \(M \) se expresa en decibeles, es decir

\[M_{dB} = 20 \log M \]

con lo que la expresión (3.12) puede ponerse,

\[M_{dB} = 20 \log K \]

(3.14)

\[+20 \log \sqrt{\left(\frac{\omega}{z_1} \right)^2 + 1} + 20 \log \sqrt{\left(\frac{\omega}{z_2} \right)^2 + 1} + \ldots + 20 \log \sqrt{\left(\frac{\omega}{z_m} \right)^2 + 1} \]

\[-20 \log \sqrt{\left(\frac{\omega}{-p_1} \right)^2 + 1} - 20 \log \sqrt{\left(\frac{\omega}{-p_2} \right)^2 + 1} - \ldots - 20 \log \sqrt{\left(\frac{\omega}{-p_n} \right)^2 + 1} \]

Figura 3.3: Diagrama de Bode del factor \(K \)

De aquí se deduce que el diagrama de Bode se puede realizar trazando las gráficas correspondientes a cada uno de los sumandos de las expresiones (3.15), para el módulo, y (3.13), para el argumento, y sumando luego dichas gráficas. Vamos a ver como se realiza el trazado, individualizado para cada sumando del módulo y de la fase, según que las raíces sean nulas, reales o complejas, así como para la constante de ganancia estática \(K \).
Factor de ganancia estática K

El factor K de (3.12) representa un sumando constante, de valor $20 \log K$, ya que no depende de ω. La fase vale cero para todo valor de ω.

\[
M = 20 \log w \\
\phi = 90^\circ
\]

Figura 3.4: Diagrama de Bode del factor s

Factor s en el numerador

Un factor s en el numerador corresponde a un cero de $G(s)$ en el origen ($z_1 = 0$). La gráfica del módulo está determinada por la ecuación.

\[
M_{dB} = 20 \log |j\omega| = 20 \log \omega
\]

Esta ecuación representa una recta, de pendiente 20 dB, en el diagrama de Bode. La gráfica de la fase viene dada por

\[
\phi = \angle j\omega = 90^\circ
\]

El diagrama de Bode se ha representado en la figura 3.4.

Factor s en el denominador

Un factor s en el denominador corresponde a un polo de $G(s)$ en el origen ($p_1 = 0$). La gráfica del módulo está determinada por

\[
M_{dB} = 20 \log \frac{1}{j\omega} = -20 \log \omega
\]

Esta ecuación representa una recta, de pendiente -20 dB, en el diagrama de Bode. La gráfica de la fase viene dada por

\[
\phi = \angle \frac{1}{j\omega} = -90^\circ
\]
3.4. DIAGRAMAS DE BODE

El diagrama de Bode se ha representado en la figura 3.5.

Fótor \((\frac{j \omega}{z_1} + 1)\) del numerador

Si \(z_1\) es un cero real de \(G(s)\), la gráfica del módulo del factor \((\frac{j \omega}{z_1} + 1)\) del numerador de \(G(s)\) viene dada, según (2.24) por

\[
M_{dB} = 20 \log \sqrt{\left(\frac{\omega}{\omega_1}\right)^2 + 1} \quad (3.15)
\]

siendo \(\omega_1 = -z_1\). Vamos a considerar tres partes de la curva. En la zona en que \(\omega \ll \omega_1\) despreciamos \((\omega/\omega_1)^2\) frente a la unidad, con lo que el módulo vale

\[M_{dB} = 20 \log 1 = 0\]

En la zona en que \(\omega \gg \omega_1\) despreciamos la unidad frente a \((\omega/\omega_1)^2\) con lo que el módulo vale

\[M_{dB} = 20 \log \frac{\omega}{\omega_1}\]

que corresponde a una recta, de pendiente 20 dB, que pasa por el punto \(\log \omega = \log \omega_1\) del eje \(\log \omega\).

Por último, en el punto \(\omega = \omega_1\), según (3.15), el módulo vale

\[M_{dB} = 20 \log \sqrt{2} = 3dB\]

Para trazar la curva de la fase procedemos de manera similar a la empleada para el módulo. El argumento del factor \((j \omega - z_1)\) del numerador de \(G(s)\) es

\[
\phi = \tan^{-1} \frac{\omega}{\omega_1} \quad (3.16)
\]
CAPÍTULO 3. RESPUESTA DE FRECUENCIA

Para $\omega \ll \omega_1$ la fase, dada por (3.16), es

$$\phi = \tan^{-1}(0) = 0$$

Para $\omega \gg \omega_1$,

$$\phi = \tan^{-1}(\infty) = 90^\circ$$

Y para $\omega = \omega_1$,

$$\phi = \tan^{-1}(1) = 45^\circ$$

Para trazar el diagrama de Bode se efectúan aproximaciones rectas de las curvas de módulo y de fase en las zonas de $\omega \ll \omega_1$ y de $\omega \gg \omega_1$, que se unen con el punto $\omega = \omega_1$, en el cual el módulo vale 3 decibios y la fase 45 grados, mediante un segmento de curva realizada a mano alzada o con una plantilla. En la práctica se considera que $\omega \ll \omega_1$ cuando es diez veces (una década) menor y que $\omega \gg \omega_1$ cuando es diez veces mayor. La gráfica de Bode del factor $(s/\omega_1 + 1)$ se representa en la figura 3.6.

Factor $(j\omega/p_1 + 1)$ del denominador

Este caso es muy similar al anterior. Si p es un polo real de $G(s)$, las expresiones del módulo y de la fase son, haciendo $\omega_1 = -p_1$, idénticas a las obtenidas en el apartado anterior, aunque con signo cambiado. En efecto, el módulo de $1/(j\omega/p_1 + 1)$ es, según (3.15):

$$M_{dB} = 20\log(1) - 20\log \sqrt{\left(\frac{\omega}{\omega_1}\right)^2 + 1} = -20\log \sqrt{\left(\frac{\omega}{\omega_1}\right)^2 + 1}$$

y el argumento,

$$\phi = 0 - \tan^{-1}\left(\frac{\omega}{\omega_1}\right) = -\tan^{-1}\left(\frac{\omega}{\omega_1}\right)$$
Las gráficas de módulo y de fase, simétricas respecto al eje \(\omega \) a las obtenidas para el factor \(\frac{j\omega}{-p_1 + 1} \) del numerador, se han representado en la figura 3.7.

Raíces múltiples

Si \(G(s) \) tiene un número \(n_z \) de ceros \(z_1 \) o un número \(n_p \) de polos \(p_1 \) repetidos, existirá un factor de la forma \((s - z_1)^{n_z}\) en el numerador o de la forma \((s - p_1)^{n_p}\) en el denominador de la expresión (3.10). Las expresiones del módulo y fase, obtenidas a partir de (3.12) y (3.13) fase serán, para el primer caso:

\[
M_{dB} = 20n_z \log \sqrt{\left(\frac{\omega}{\omega_1}\right)^2 + 1}
\]

\[
\phi = n_z \tan^{-1}\left(\frac{\omega}{\omega_1}\right)
\]

El diagrama de Bode correspondiente se ha representado en la figura 3.8.

En el segundo caso existirá un factor de la forma \((s - p_1)^{n_p}\) en el denominador de \(G(s) \). Las expresiones del módulo y de la fase serán:

\[
M_{dB} = -20n_p \log \sqrt{\left(\frac{\omega}{\omega_1}\right)^2 + 1}
\]

\[
\phi = -n_p \tan^{-1}\left(\frac{\omega}{\omega_1}\right)
\]

El diagrama de Bode se ha representado en la figura 3.9. Si las raíces \(z_1 \) o \(p_1 \) repetidas son nulas (raíces en el origen del plano complejo) se obtienen diagramas de Bode similares a los representados en las figuras 3.4 y 3.5, si bien la pendiente de la recta del módulo es \(20n_z \) o \(20n_p \), y la ordenada de la recta de fase es \(+90^\circ n_z \) o \(-90^\circ n_p \).
CAPÍTULO 3. RESPUESTA DE FRECUENCIA

Raíces complejas en el numerador

Si dos raíces z_1, z_2 del numerador de $G(s)$ son complejas conjugadas, los términos $(s - z_1)$ y $(s - z_2)$ de la expresión (3.9) pueden agruparse dando lugar a un factor de segundo orden, de la forma

$$s^2 + 2\xi\omega_n s + \omega_n^2$$

en el que ω_n es la pulsación natural y ξ el coeficiente de amortiguamiento. Dividiendo por $\xi\omega_n$ obtenemos

$$\left(\frac{s}{\omega_n}\right)^2 + 2\xi\left(\frac{s}{\omega_n}\right) + 1$$

(3.18)

Vamos a considerar en primer lugar el caso en que $\xi = 1$. Entonces la expresión (3.18) queda

$$\left(\frac{s}{\omega_n}\right)^2 + 2\left(\frac{s}{\omega_n}\right) + 1 = \left(\frac{s}{\omega_n} + 1\right)^2$$

Este caso corresponde a una raíz doble $s = -\omega_n$, y ha sido estudiado en el apartado anterior. El diagrama de Bode es, por tanto, el de la figura 3.8 con $n_z = 2$.

Para valores de ω menores que la unidad hemos de obtener el módulo y el argumento de la expresión (3.18), en función de ω, para cada valor de ω. Sustituyendo s por $j\omega$ queda

$$1 - \left(\frac{\omega}{\omega_n}\right)^2 + 2\xi\left(\frac{\omega}{\omega_n}\right) j$$

El diagrama de Bode se ha representado en la figura 3.10.
3.4. DIAGRAMAS DE BODE

Raíces complejas en el denominador

Como fácilmente puede deducirse, si existe un factor de segundo orden de la forma
\[
\left(\frac{s}{\omega_n} \right)^2 + 2\xi \left(\frac{s}{\omega_n} \right) + 1
\]
en el denominador de \(G(s) \), los diagramas de Bode son simétricos, respecto al eje \(\omega \), a los obtenidos en el apartado anterior. Se han representado en la figura 3.11.

Para valores de \(\xi = 1, 1/2, 1/4 \ldots \), el módulo y el argumento de del factor de 2° orden de la expresión (3.17) ha sido calculado por computador y representado en la figura 3.12.

Los valores de \(\xi > 1 \), no representados en las gráficas, corresponden al caso de raíces reales y distintas, ya estudiado.

Elemento de retraso en el tiempo

Corresponde a un elemento del sistema que provoca un retraso en el tiempo en un determinada magnitud. Sea una magnitud \(x(t) \) que se aplica a la entrada del elemento de retraso representado en la figura 3.13. La salida \(y(t) \) es idéntica a la entrada \(x(t) \) aunque retrasada un tiempo dado \(T \). Es decir
\[
y(t) = x(t - T)u(t - T)
\]
La función de transferencia de este elemento es \(e^{-sT} \) ya que
\[
\mathcal{L}[x(t - T)u(t - T)] = X(s)e^{-sT}
\]
Es un elemento no lineal por lo que no está incluido en la expresión de \(G(s) \) dada en (3.9). El diagrama de Bode se realiza hallando el módulo y el argumento de \(e^{-sT} \) para \(s = j\omega \).

\[
M = |e^{-j\omega T}| = 1
\]
\[
\phi = \angle e^{-j\omega T} = -\omega T = -10\log_\omega T
\]
3.5. Trazado por computador

La realización de un programa de ordenador que genere los trazados de Nyquist o de Bode es muy sencilla. Se sigue un procedimiento análogo al empleado en el apartado 3.3 para la confección manual del diagrama de Nyquist por medio de una tabla. A partir de un valor inicial de ω, igual o próximo a cero, el computador ha de calcular $|G(j\omega)|$ y $\angle G(j\omega)$. A continuación se incrementa ω y se vuelven a calcular los mismos valores, continuando así el proceso hasta que ω alcance un valor establecido previamente. Los valores calculados pueden almacenarse en un fichero del disco para su posterior representación por medio de otro programa de gráficos o bien pueden ir representándose a la vez que se calculan en la pantalla del ordenador [Maltab].

3.6. Criterio de estabilidad de Nyquist

Una de las principales aplicaciones de los métodos de respuesta de frecuencia es la determinación de la estabilidad, absoluta y relativa, de los sistemas de control. El criterio de Nyquist permite conocer la estabilidad de un sistema en lazo cerrado, tal como el representado en la figura 3.14 conociendo la respuesta de frecuencia de su función de transferencia en lazo abierto $G(s)H(s)$ [Ogata 82, sec. 9.5]. Puesto que la respuesta de frecuencia de un sistema en lazo abierto puede hallarse experimentalmente, se puede por este método averiguar la estabilidad de un sistema sin conocer su función de transferencia.

El sistema de control de la figura 3.14 será estable si su función de transferencia, dada por

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$

no tiene polos en el semiplano derecho complejo. Como los polos de $T(s)$ son los ceros de la función $F(s) = 1 + G(s)H(s)$, una forma de averiguar la estabilidad del sistema será hallar el número de ceros que tiene $F(s)$ en el semiplano derecho.
3.6. CRITERIO DE ESTABILIDAD DE NYQUIST

El criterio de Nyquist está basado en el principio del argumento, de Cauchy, estudiado en la teoría de variable compleja. Este principio establece que, dada una función $F(s)$ de la variable compleja s, analítica en un recinto R limitado por camino cerrado c excepto en un número finito de polos, la diferencia entre el número Z_F de ceros y el número P_F de polos de $F(s)$ existentes en el recinto R, es igual al número de vueltas que da el vector $F(s)$ alrededor del origen del plano de la función, en un sentido dado, al recorrer la variable s el camino cerrado c que rodea a R, en el mismo sentido. Es decir,

$$Z_F - P_F = \frac{1}{2\pi} \Delta_c \arg[F(s)]$$

en donde $\Delta_c \arg F(s)$ significa el incremento del argumento de $F(s)$ al recorrer la variable un camino c.

Este principio nos puede servir para averiguar la diferencia entre el número de ceros Z_F y el número de polos P_F de una función $F(s)$ en el semiplano derecho $\mathbb{C}_{>0}$. Para ello la variable s ha de recorrer un camino (camino de Nyquist) que encierre por completo a dicho semiplano.

El camino de Nyquist, como puede apreciarse en la figura 3.15 se compone del eje imaginario del plano complejo s y de una semicircunferencia de radio infinito situada en el semiplano derecho. Al recorrer la variable s este camino en el sentido de las flechas, la función $F(s)$ recorre una curva en el plano $F(s)$. El número de vueltas, en el sentido del camino de Nyquist, que da el vector $F(s)$ alrededor del origen será igual a $Z_F - P_F$.

Si utilizamos el plano $G(s)H(s)$ en lugar de $F(s)$ y representamos en él la función $G(s)H(s)$, vemos que la curva obtenida es igual a la obtenida en el plano $F(s)$ pero desplazada en una unidad hacia la izquierda(figura 3.16).

Por tanto el número de vueltas que da el vector $F(s)$ alrededor del origen en el plano $F(s)$ es igual al número de vueltas que da el vector $1 + G(s)H(s)$ alrededor del punto $(-1 + 0j)$ en el plano $G(s)H(s)$ (figuras 3.15 y 3.16).
Por otro lado, sea

\[G(s) = \frac{n_g}{d_g}, \quad H(s) = \frac{n_h}{d_h}, \]

en donde \((n_g, d_g)\) y \((n_h, d_h)\) son los polinomios numerador y denominador de \(G(s)\) y de \(H(s)\), respectivamente. Entonces tenemos que

\[T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{n_g}{d_g + n_g n_h} \]

y que

\[F(s) = 1 + G(s)H(s) = \frac{d_g d_h + n_g n_h}{d_g d_h} \]

de donde los polos de \(T(s)\) son los ceros de \(F(s)\). Además, los polos de \(G(s)H(s)\) son los polos de \(F(s)\). Por tanto,

\[P_T = Z_F, \quad P_{GH} = P_F, \]

los polos de \(F(s)\) son los mismos que los de \(G(s)H(s)\). Además, como ya se ha indicado anteriormente, los polos de \(T(s)\) son los ceros de la función \(F(s) = 1 + G(s)H(s)\). Por lo tanto se deduce que:
3.7. MÁRGENES DE FASE Y DE GANANCIA

Además de servir para hallar la estabilidad absoluta, los diagramas de Nyquist y de Bode nos informan sobre el grado de estabilidad o estabilidad relativa del sistema [Ogata 82, sec. 9.7]. El margen de fase y el margen de ganancia son dos magnitudes que pueden obtenerse de dichos diagramas y que son unos índices de la estabilidad relativa del sistema.

![Diagrama de control en lazo cerrado]

Figura 3.14: Sistema de control en lazo cerrado

![Diagrama de camino de Nyquist y curva G(s)H(s)]

Figura 3.15: Camino de Nyquist y curva $G(s)H(s)$

Número de vueltas de $G(s)H(s)$ alrededor de $(-1 + 0j) = N^o$ polos de $T(s)$ en spd - N^o de polos de $G(s)H(s)$ en spd

o bien:

N^o de polos de $T(s)$ en spd = N^o de vueltas de $G(s)H(s)$

alrededor de $(-1 + 0j) + N^o$ de polos de $G(s)H(s)$ en spd

Esta última expresión constituye el criterio de Nyquist. Puesto que generalmente (aunque no siempre) la función de transferencia en lazo abierto $G(s)H(s)$ corresponde a un sistema estable, el N^o de polos de $G(s)H(s)$ en spd suele ser cero.

3.7. Márgenes de fase y de ganancia

Además de servir para hallar la estabilidad absoluta, los diagramas de Nyquist y de Bode nos informan sobre el grado de estabilidad o estabilidad relativa del sistema [Ogata 82, sec. 9.7]. El margen de fase y el margen de ganancia son dos magnitudes que pueden obtenerse de dichos diagramas y que son unos índices de la estabilidad relativa del sistema.
Margen de ganancia de un sistema estable es la mayor constante real M, por la cual podemos multiplicar la función de transferencia en lazo abierto $G(s)H(s)$, manteniendo estable el sistema en lazo cerrado. En el diagrama de Nyquist de $G(s)H(s)$ representado en la figura 3.17 el margen de fase M vale

$$M_G = K_c = \frac{1}{d}$$

siendo K la ganancia estática de la función $G(s)H(s)$ cuya estabilidad relativa queremos determinar y K la ganancia estática para que el sistema sea marginalmente estable, es decir la correspondiente a la curva que pasa por $(-1 + 0 j)$, como puede verse en la figura 3.17.

Margen de fase es el máximo incremento de fase, sin afectar al módulo, que puede darse a la función de transferencia en lazo abierto $G(s)H(s)$, manteniendo estable el sistema en lazo cerrado. Es igual a $180^\circ + \phi$, siendo ϕ la fase de $G(s)H(s)$ cuando la curva pasa por $(-1 + 0 j)$. Los márgenes de fase y de ganancia pueden también obtenerse del diagrama de Bode, tal y como puede apreciarse en la figura 3.18.
3.7. MÁRGENES DE FASE Y DE GANANCIA

Margen de ganancia = $1/d$

Margen de fase = ϕ_m

Figura 3.17: Márgenes de ganancia y de fase

Figura 3.18: Márgenes de ganancia y de fase en el diagrama de Bode
Capítulo 4

Lugar de las raíces

Los parámetros de un sistema lineal de regulación pueden variar por motivos diversos. La variación puede ser involuntaria, por cambios que se van produciendo en los componentes con el paso del tiempo, por influencia de los cambios del medio, etc., o voluntaria, cuando se desea modificar valores de algunos componentes para mejorar el comportamiento del sistema. Hemos visto cómo la posición de las raíces de la ecuación característica en el plano complejo indica la estabilidad, absoluta y relativa del sistema, así como otros datos de interés relacionados con sus especificaciones de funcionamiento. El lugar geométrico de las raíces es el lugar geométrico que describen las raíces de la ecuación característica cuando varía un parámetro del sistema desde cero hasta infinito. Este parámetro variable está relacionado con uno o con varios coeficientes de la ecuación característica y puede ser, en general, un valor asociado a un componente cualquiera del sistema, si bien el caso más usual es indicado en la figura 4.1, en la que el parámetro variable es la ganancia estática K de la función de transferencia en lazo abierto [Ogata 82, cap8].

4.1. Fundamento del método

Vamos a considerar el sistema lineal cuyo diagrama de bloques aparece en la figura 4.1. $G(s)$ y $H(s)$ son funciones de transferencia, es decir funciones racionales, y K es el parámetro cuya variación va a producir el lugar de las raíces. La función de transferencia del sistema es:

$$T(s) = \frac{KG(S)}{1 + KG(S)H(s)} \quad (4.1)$$
CAPÍTULO 4. LUGAR DE LAS RAÍCES

La función de transferencia en lazo abierto $KG(s)H(s)$ puede ponerse en la forma

$$KG(S)H(s) = K \frac{Z(s)}{P(s)} = K \frac{(s - z_1)(s - z_2) \ldots (s - z_m)}{(s - p_1)(s - p_2) \ldots (s - p_n)}$$

(4.2)

en donde z_1, z_2, \ldots, z_m son los ceros y p_1, p_2, \ldots, p_n son los polos de $G(s)H(s)$, raíces de los polinomios $Z(s)$ y $P(s)$ respectivamente.

Puesto que $KG(s)H(s)$ es una función de variable compleja, vamos a expresarla en forma exponencial para poder operar con los vectores en modo gráfico.

$$KG(s)H(s) = K \frac{|s - z_1||s - z_2| \ldots |s - z_m|}{|s - p_1||s - p_2| \ldots |s - p_n|} e^{j\Sigma \phi_i}$$

(4.3)

en donde

$$\Sigma \phi_i = \phi_{z_1} + \phi_{z_2} + \ldots + \phi_{z_m} - \phi_{p_1} - \phi_{p_2} - \ldots - \phi_{p_n}$$

(4.4)

La ecuación característica del sistema es

$$1 + K \frac{Z(S)}{P(s)} = 0$$

(4.5)

o bien,

$$K \frac{Z(S)}{P(s)} = -1$$

(4.6)

y en forma exponencial,

$$K \frac{Z(S)}{P(s)} = e^{\pm j(2k+1)\pi} \quad k = 0, 1, 2, \ldots$$

(4.7)

ya que el número -1 es un vector de módulo unidad y argumento múltiplo impar de π. Por tanto, en cada uno de los puntos del lugar geométrico de las raíces se debe satisfacer la ecuación

$$K \frac{|s - z_1||s - z_2| \ldots |s - z_m|}{|s - p_1||s - p_2| \ldots |s - p_n|} e^{j\Sigma \phi_i} = e^{\pm j(2k+1)\pi}$$

(4.8)

De esta ecuación se deducen las denominadas condiciones de magnitud y de ángulo. La condición del ángulo establece que el argumento de $G(s)H(s)$ ha de ser un múltiplo impar de $\pm \pi$ en todos los puntos del lugar. Es decir

$$\arg[KG(s)H(s)] = \Sigma \phi_i = \pm(2k + 1)\pi$$

(4.9)

La condición de magnitud dice que el módulo de $G(s)H(s)$ debe ser igual a la unidad en todos los puntos del lugar geométrico de las raíces.

$$|KG(s)H(s)| = K \frac{|s - z_1||s - z_2| \ldots |s - z_m|}{|s - p_1||s - p_2| \ldots |s - p_n|} = 1$$

o bien

$$K = \frac{|s - p_1||s - p_2| \ldots |s - p_n|}{|s - z_1||s - z_2| \ldots |s - z_m|}$$

(4.10)

Estas dos condiciones permiten establecer un proceso en dos etapas para la construcción del lugar de las raíces.
4.2. REGLAS BÁSICAS DEL TRAZADO DEL LUGAR DE LAS RAÍCES

1. Se construye el lugar de las raíces aplicando solamente la condición de ángulo, tomando todos los puntos \(s \) del plano complejo para los cuales la suma de los ángulos \(\phi_{z_i} \) de todos los vectores que van desde los ceros de \(G(s)H(s) \) hasta \(s \), menos la suma de los ángulos \(\phi_{p_j} \) de todos los vectores que van desde los polos hasta \(s \), sea un múltiplo impar de \(\pi \).

2. Una vez que se ha trazado el lugar, se aplica la condición de magnitud (4.10) para determinar el valor de \(K \) que corresponde a cada punto \(s \) del lugar. El valor de \(K \) en cada punto \(s \) del lugar es igual al producto de las longitudes de todos los vectores que van desde \(s \) a los polos, dividido entre el producto de las longitudes de todos los vectores que van desde \(s \) a los ceros.

Basadas en las condiciones de ángulo y magnitud y en los principios del cálculo complejo, se deducen una serie de reglas prácticas que permiten bosquejar con relativa facilidad el trazado del lugar de las raíces.

4.2. Reglas básicas del trazado del lugar de las raíces

Número de ramas

Existe una rama simple del lugar por cada raíz de la ecuación característica siendo por tanto el número de ramas igual al orden de la ecuación característica, e igual al mayor entre los números de polos y de ceros de \(G(s)H(s) \) [Ogata 82, sec. 8.4].

Origen y final del lugar

El lugar comienza para \(K = 0 \) en los polos de \(G(s)H(s) \) y termina para \(K = \infty \) en los ceros de \(G(s)H(s) \). Cada rama del lugar parte de un polo, ya que para \(K = 0 \) los polos en lazo cerrado coinciden con los polos en lazo abierto, y termina en un cero, ya que para \(K = \pm \infty \) los polos en lazo cerrado (polos de \(G(s)/[1 + G(s)H(s)] \)) coinciden con los ceros en lazo abierto (ceros de \(G(s)H(s) \)). Si el número de polos es mayor que el número de ceros, cabe suponer que hay en el infinito tantos ceros como polos en exceso y, por tanto, existirán ramas que terminan en el infinito. De igual modo, si el número ceros excede al de polos, existirán ramas que parten de polos situados en el infinito.

Tramos en el eje real

El lugar geométrico pasa por todos los puntos del eje real que están a la izquierda de un número impar de polos y ceros. La demostración, aplicando la condición de ángulo es inmediata.

Simetría del lugar

El lugar es simétrico respecto al eje real del plano complejo. En efecto, para cada punto del lugar, asociado a una raíz compleja de la ecuación característica, existirá otro simétrico respecto al eje real, asociado a la raíz compleja conjugada de la primera.

Número de asintotas

Si el número de polos de \(G(s)H(s) \) es mayor que el de ceros \((n > m) \), (función de transferencia en lazo abierto estrictamente propia) hay \(n - m \) ramas que terminan en el infinito y existen \(n - m \) asintotas tangentes a las ramas del lugar en los ceros ubicados en el infinito. Si el número de
polos de $G(s)H(s)$ es menor que el de ceros ($n > m$) hay $m - n$ ramas que se inician en el infinito y existen $m - n$ asintotas tangentes a las ramas del lugar en los polos ubicados en el infinito.

Ángulos de las asintotas con el eje real

El ángulo α formado por cada asintota y el eje real viene dado por la expresión:

$$\alpha = \frac{\pm (2k + 1)\pi}{n - m} \quad K = 0, 1, 2, \ldots$$

(4.11)

Si $n > m$, hay ramas que terminan en ceros situados en el infinito de modo que, a medida que s tiende a infinito, esas ramas se van acercando a las asintotas. En el límite, el ángulo formado entre un punto s del lugar y un polo p_i o un cero z_j será el ángulo a de la asintota.

$$\alpha = \lim_{s \to \infty} \arg(s - p_i) = \lim_{s \to \infty} \arg(s - z_j) = \lim_{s \to \infty} \arg(s)$$

y, aplicando la condición de ángulo expresado en (4.9),

$$m\alpha - n\alpha = \pm (2K + 1)\pi, \quad K = 0, 1, 2, \ldots$$

de donde se deduce que el ángulo α es el dado por (4.11).

Si $n < m$, las asintotas son tangentes a las ramas en los polos situados en el infinito y sigue siendo válida la expresión (4.11).

Intersección de las asintotas con el eje real

Todas las asintotas se cortan en un punto del eje real σ_c, denominado centroide de las asintotas, dado por la expresión

$$\sigma_c = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} z_i}{n - m}$$

(4.12)

Puntos de ruptura de salida y de entrada al eje real

Un punto de ruptura de salida del eje es un punto del lugar en el que dos ramas, que discurren por el eje real y que se aproximan cada vez más entre sí a medida que aumenta K, se unen, bifurcándose simétricamente en el plano complejo a partir de él. Un punto de ruptura de entrada al eje es un punto del lugar en el que dos ramas, que discurren simétricas por el plano complejo y se aproximan cada vez más entre sí a medida que aumenta K, se unen, bifurcándose en el eje real a partir de él.

Los puntos de ruptura de salida y de entrada al eje se determinan por la condición

$$\frac{dK}{ds} = 0$$

(4.13)

pero por (4.6) podemos poner

$$\frac{dK}{ds} = -\frac{d}{ds} \frac{P(s)}{Z(s)}$$

de donde

$$Z(s) \frac{d}{ds} P(s) - P(s) \frac{d}{ds} Z(s) = 0$$

(4.14)

Las raíces reales de esta ecuación nos darán los valores de los puntos de ruptura de salida y de entrada. No todas las raíces han de ser necesariamente puntos de ruptura.
4.2. REGLAS BÁSICAS DEL TRAZADO DEL LUGAR DE LAS RAÍCES

Angulos de partida y de llegada del lugar

Son los ángulos de las tangentes al lugar de las raíces en los puntos inicial y final, respectivamente. El ángulo de partida del lugar desde un polo, para $K = 0$, y el ángulo de llegada del lugar a un cero, para $K = \infty$, se determinan por medio de la condición de ángulo expresada en (4.9), hallando el ángulo de un punto s infinitamente próximo al polo o cero considerado.

4.2.1. Trazado del lugar de las raíces por computador

La ecuación característica (4.5) del sistema puede expresarse

$$P(s) + KZ(s) = 0 \quad (4.15)$$

Un método numérico directo de obtener el trazado del lugar de las raíces consiste en hallar todas las raíces de la ecuación (4.15) para cada valor de K, representando gráficamente cada una de ellas por un punto en el plano complejo. Un computador puede hallar, mediante un procedimiento de cálculo numérico, las raíces de la ecuación característica para un conjunto finito de valores de K pertenecientes a un intervalo también finito, y representar gráficamente el lugar geométrico resultante en la pantalla o impresora. Elijiendo un intervalo de valores de suficientemente amplio y un incremento de K suficientemente pequeño, puede obtenerse un trazado de apariencia continua al quedar los puntos del trazado muy próximos entre sí. Mediante programas específicos de diseño asistido por computador de sistemas de control (CACSD) puede trazarse con facilidad el lugar de las raíces. Así, por ejemplo, el programa MATLAB [Maltab] dispone de una librería de CACSD denominada control toolbox en la que se encuentra una función, denominada rlocus que efectúa el trazado del lugar de las raíces en la pantalla, y si se desea en la impresora, del ordenador. De este modo se ha realizado el trazado del lugar geométrico de las raíces de la figura 4.2 que corresponde a un sistema cuya función de transferencia en lazo abierto es

$$G(s)H(s) = \frac{10}{s(s^2 + 4s + 5)}$$

Figura 4.2: Trazado del lugar de las raíces mediante MATLAB
4.3. Ejemplos

Como aplicación vamos a realizar el trazado del lugar de las raíces de un sistema de regulación cuya función de transferencia en lazo abierto es

\[G(s)H(s) = \frac{s + 6}{(s + 2)(s^2 + 8s + 25)} \]

El método que vamos a seguir consiste en utilizar las reglas expuestas en el capítulo para obtener los elementos geométricos que faciliten el trazado a mano alzada.

1. Número de ramas.
 La ecuación característica es
 \[(s + 2)(s + 8s + 25) + K(s + 6) = 0 \]
 Es de orden 3 luego el lugar tiene 3 ramas.

2. Origen y final del lugar.
 Los polos de \(G(s)H(s)\) son:
 \[s_1 = -2, \quad s_2 = -4 + 3j, \quad s_3 = -4 - 3j \]
 Los ceros de \(G(s)H(s)\) son:
 \[z_1 = -6 \]
 El lugar comienza en los polos y termina en los ceros. Como hay dos polos en exceso, hay dos ramas que terminan en el infinito.

3. Tramos en el eje real.
 Desde el polo \(s = -2\) hasta el cero \(z = -6\), los puntos del eje están a la izquierda de un número impar de polos mas ceros, luego el lugar coincide con el eje entre \(s_1\) y \(z_1\).

4. Simetría del lugar.
 El lugar es simétrico respecto al eje real del plano complejo. Esta condición siempre se cumple.

5. Número de asintotas.
 En este caso: \(n = \) número de polos = 3, \(m = \) número de ceros = 1. Por lo tanto, hay \(3 - 1 = 2\) asintotas.

6. Ángulos de las asintotas con el eje real.
 Aplicando la fórmula (4.11)
 \[\alpha = \frac{\pm(2k + 1)\pi}{n - m} \quad K = 0, 1, 2, \ldots \]
 los ángulos de las asintotas valen, para \(K = 0\): \(\alpha = \pm\pi/2\). Es decir, las dos asintotas cortan al eje real en ángulo recto.
7. Intersección de las asíntotas con el eje real.

El punto \(\sigma_c \) de intersección de las asíntotas con el eje real se obtiene mediante la fórmula 4.12, sumando todos los polos, restando los ceros y dividiendo el resultado entre \(n - m \):

\[
\sigma_c = \frac{-2 - 4 + 3j - 4 - 3j - (-6)}{3 - 2} = -2
\]

8. Puntos de ruptura de salida y de entrada al eje real.

Aplicando la ecuación (4.14) tenemos

\[
(s + 6) \frac{d}{ds} (s + 2)(s^2 + 8s + 25) - (s + 2)(s^2 + 8s + 25) \frac{d}{ds} (s + 6) = 0
\]

\[
(s + 6)(s^2 + 20s + 41) - (s^3 + 10s^2 + 41s + 50) = 0
\]

\[
2s^3 + 28s^2 + 120s + 196 = 0
\]

Las raíces de esta ecuación son

\[
s_1 = -8,069682
\]

\[
s_2 = -2,965159 + 1,830861j
\]

\[
s_3 = -2,965159 - 1,830861j
\]

La raíz real \(s_1 = -8,069682 \) de esta ecuación no corresponde a ningún punto de ruptura ya que queda fuera del lugar.

Figura 4.3: Trazado del lugar de las raíces mediante MATLAB

9. Angulos de partida y de llegada del lugar.

Tomando un punto \(s \) del lugar muy próximo al polo \(p_2 \), vamos a aplicar la condición de ángulo (4.9):

\[
\phi_{z_1} - \phi_{p_1} - \phi_{p_2} - \phi_{p_3} = \pm(2k + 1)\pi
\]

Los ángulos que forman los vectores dirigidos a \(p_2 \) desde todos los demás polos y ceros son:

\[
\phi_{z_1} = \arctan(3/2) = 56^\circ18'32''
\]

\[
\phi_{p_1} = \arctan(p_2 - p_1) = 180^\circ - \phi_{z_1} = 123^\circ41'
\]

\[
\phi_{p_3} = \arctan(p_2 - p_3) = 90
\]
El ángulo de partida es ϕ_{p_2} ya que es el ángulo del vector que va desde p al punto s, infinitamente próximo. Despejando ϕ_{p_2},

$$\phi_{p_2} = \phi_{z_1} - \phi_{p_1} - \phi_{p_3} \pm (2k + 1)\pi$$

y para $K = 0$ queda

$$\phi_{p_2} = 56^\circ 18'32'' - 123^\circ 41' - 90^\circ + 180^\circ = 22^\circ 37'11''$$

El trazado del lugar de las raíces de este ejemplo, generado por computador con el programa MATLAB, aparece en la figura 4.3.

En la figura 4.4 se ha realizado el trazado del lugar de las raíces del sistema cuya función de transferencia en lazo abierto es

$$G(s)H(s) = \frac{s + 1}{s(s + 2)(s^2 + 6s + 13)}$$

La obtención de este trazado, a mano alzada y siguiendo las reglas estudiadas en este capítulo se deja como ejercicio al lector.

Figura 4.4: Trazado del lugar de las raíces mediante MATLAB
Capítulo 5

Funcionamiento de los sistemas de control

5.1. Especificaciones de funcionamiento

Cada sistema dinámico evoluciona en el tiempo de una forma particular que lo caracteriza. Las especificaciones de funcionamiento son las cualidades que permiten describir los rasgos más interesantes del comportamiento dinámico de los sistemas [Ogata 82, sec. 10.1].

Un sistema de control está siempre asociado al proceso o planta que controla y, por tanto, serán las condiciones exigidas al comportamiento de éste las que demanden unas determinadas prestaciones al sistema de control. A menudo deberá satisfacer un gran número de especificaciones y frecuentemente existirán varias soluciones aceptables. El diseño suele aceptarse como bueno si en él se da un adecuado compromiso entre coste y prestaciones. El comportamiento se manifiesta en la evolución de las variables de salida del proceso o planta y puede medirse mediante índices de funcionamiento. El control deberá diseñarse de manera que se optimicen algunos de estos índices de funcionamiento, con ciertas condiciones o restricciones impuestas a las variables para asegurar el correcto comportamiento del sistema.

Se plantea así un problema optimización, similar a los que se dan en otras áreas la economía, ingeniería etc., cuya resolución puede abordarse por métodos matemáticos. En términos generales, el problema de optimización consiste en minimizar una función, denominada función objetivo, sujeta a determinadas restricciones. No vamos a abordar aquí el tema de la optimización de sistemas, desarrollado en tratados avanzados de ingeniería de control, sino a mostrar una serie de especificaciones generales de funcionamiento que deben cumplir los sistemas de control. De algunas de estas especificaciones se derivan índices de funcionamiento que pueden ser utilizados en el diseño de los sistemas de control, bien por el método de optimización o bien por otros métodos.

Las especificaciones más importantes que ha de satisfacer un sistema de control se refieren a los siguientes aspectos de su comportamiento:

1. **Estabilidad.** La condición de estabilidad absoluta es esencial para todo sistema de control. La estabilidad relativa es un índice del buen funcionamiento del sistema.

2. **Rapidez de respuesta.** La rapidez de respuesta de un sistema viene dada por sus características de su respuesta temporal o bien de su respuesta de frecuencia.

3. **Precisión.** La respuesta de un servosistema debe seguir lo más fielmente posible a la entrada de referencia y por tanto la diferencia entre ambas o error debe ser mínima.
Estas especificaciones de funcionamiento pueden apreciarse analizando las curvas de respuesta temporal y de respuesta de frecuencia del sistema objeto de estudio.

Respuesta temporal

La forma más natural de observar el funcionamiento de un sistema es el examen de su respuesta temporal. Si la salida del sistema debe seguir a la entrada, podemos aplicar una función conocida a dicha entrada y examinar la salida obteniendo de la misma las características de interés. Se utilizan como funciones de entrada el impulso de Dirac, la función escalón unitario, y las funciones rampa, parábola, y sucesivas potencias de t. Las especificaciones de respuesta temporal de un sistema de control se suelen referir generalmente a la respuesta del sistema a una entrada escalón unitario ya que en tal respuesta aparecen de forma clara ciertas características esenciales del sistema de control [Ogata 82, sec. 6.4].

La respuesta de un sistema a un escalón unitario se suele representar en forma de una gráfica, en la que se indican unas determinadas especificaciones de sus características más notables. En el caso del sistema de segundo orden, las e especificaciones pueden hallarse analíticamente. En la figura 5.1 se ha representado la respuesta al escalón de un sistema y sus correspondientes especificaciones. Se ha supuesto que la ganancia estática del sistema vale la unidad es decir $y_{ss} = 1$.

![Figura 5.1: Respuesta temporal](image)

Rebasamiento máximo

Es la desviación máxima M_P de la respuesta respecto al escalón de entrada. Se suele expresar en tanto por ciento del valor del escalón.

El valor de M_P puede hallarse, para el caso del sistema de segundo orden, igualando a cero la derivada de su expresión de la respuesta temporal

$$y(t) = 1 + \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin(\omega_n \sqrt{1 - \xi^2} t + \phi)$$

(5.1)
para hallar sus valores extremos.

\[
\dot{y}(t) = e^{-\xi \omega_n t} \left[\frac{-\xi \omega_n}{\sqrt{1 - \xi^2}} \sin(\omega_n \sqrt{1 - \xi^2 t} - \phi) + \omega_n \cos(\omega_n \sqrt{1 - \xi^2 t} - \phi) \right]
\]

\[
= e^{-\xi \omega_n t} \left(\frac{-\xi \omega_n}{\sqrt{1 - \xi^2}} \left[\sin(\omega_n \sqrt{1 - \xi^2 t}) \cos(\phi) - \cos(\omega_n \sqrt{1 - \xi^2 t}) \sin(\phi) \right] \right)
\]

\[+ \omega_n \left[\cos(\omega_n \sqrt{1 - \xi^2 t}) \cos(\phi) + \sin(\omega_n \sqrt{1 - \xi^2 t}) \sin(\phi) \right] \quad (5.2)
\]

pero sabemos que

\[
\sin \phi = \sqrt{1 - \xi^2}, \quad \cos \phi = -\xi
\]

Sustituyendo en (5.2) queda

\[
\dot{y}(t) = e^{-\xi \omega_n t} \left(\frac{-\xi \omega_n}{\sqrt{1 - \xi^2}} \left[(-\xi) \sin(\omega_n \sqrt{1 - \xi^2 t}) - \sqrt{1 - \xi^2} \cos(\omega_n \sqrt{1 - \xi^2 t}) \right] \right)
\]

\[+ \omega_n e^{-\xi \omega_n t} \left[(-\xi) \cos(\omega_n \sqrt{1 - \xi^2 t}) + \sqrt{1 - \xi^2} \sin(\omega_n \sqrt{1 - \xi^2 t}) \right]
\]

Operando resulta,

\[
\dot{y}(t) = e^{-\xi \omega_n t} \left(\frac{-\xi^2 \omega_n}{\sqrt{1 - \xi^2}} + \omega_n \sqrt{1 - \xi^2} \right) \sin(\omega_n \sqrt{1 - \xi^2 t})
\]

Igualando a cero la derivada queda

\[
\sin(\omega_n \sqrt{1 - \xi^2 t}) = 0
\]

Los valores de t que satisfacen esta ecuación son

\[
t = \frac{n\pi}{\omega_n \sqrt{1 - \xi^2}}, \quad n = 0, 1, 2, \ldots
\]

Para $n = 0$, instante inicial, $t = 0$, $y(t)$ tiene un mínimo. Para valores sucesivos de n se van alternando máximos y mínimos. La sobreoscilación máxima M_P corresponde al primer máximo de $y(t)$, es decir para $n = 1$. El instante t_P en que se produce es

\[
t_P = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}}
\]

El valor máximo $1 + M_P$ se obtiene sustituyendo t_P en (5.1):

\[
1 + M_P = y(t_P)
\]

\[= 1 + \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t_P} (-\sqrt{1 - \xi^2} \cos \pi + \xi \sin \pi)
\]

\[
M_p = e^{-\xi \pi/\sqrt{1 - \xi^2}}
\]
CAPÍTULO 5. FUNCIONAMIENTO DE LOS SISTEMAS DE CONTROL

Tiempo de subida

Es el tiempo \(t_r \) que transcurre desde que la respuesta es del 10\% hasta que alcanza el 90\% del valor final. Suele también definirse como el tiempo que tarda la respuesta en alcanzar por primera vez el valor final. En el sistema de segundo orden puede calcularse. El valor de \(y(t) \) dado por (5.1) ha de valer 1:

\[
y(t) = 1 = 1 + \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin(\omega_n \sqrt{1 - \xi^2} t - \phi)
\]
y, por tanto,

\[
\sin(\omega_n \sqrt{1 - \xi^2} t - \phi) = 0
\]
operando queda

\[
\sin(\omega_n \sqrt{1 - \xi^2} t) \cos \phi = \cos(\omega_n \sqrt{1 - \xi^2} t) \sin \phi
\]
es decir

\[
\tan(\omega_n \sqrt{1 - \xi^2} t) = \tan \phi = -\frac{\sqrt{1 - \xi^2}}{\xi}
\]
despejando \(t \) obtenemos el tiempo de subida:

\[
t_r = \frac{\arctan(-\sqrt{1 - \xi^2}/\xi)}{\omega_n \sqrt{1 - \xi^2}}
\]

Tiempo de retraso

Es el tiempo \(t_d \) transcurrido desde el instante inicial hasta que la respuesta adquiere el 50\% del valor final.

Tiempo de respuesta

Es el tiempo \(t_s \) transcurrido desde que se aplica la entrada escalón hasta que la respuesta se estabiliza dentro de una banda de tolerancia de error definida por un porcentaje del valor final.

Para un sistema de segundo orden subamortiguado, se calcula teniendo en cuenta que la respuesta está comprendida entre las dos curvas envolventes exponenciales dadas por la siguiente expresión:

\[
y(t) = 1 \pm \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t}
\]
La constante de tiempo es \(1/(\xi \omega_n) \). Si se fija una banda de tolerancia de error del 2\%, y se cumple que \(0 < \xi < 0,9 \), tenemos, en el caso peor,

\[
e^{-\xi \omega_n t} < 0,02 \sqrt{1 - 0,9^2} - \xi \omega_n t < \ln(0,02 \sqrt{1 - 0,9^2}) = -4,74
\]
El tiempo de establecimiento es, por tanto

\[
t_s > \frac{4,74}{\xi \omega_n}
\]
es decir, unas cinco constantes de tiempo.
5.1. ESPECIFICACIONES DE FUNCIONAMIENTO

Valor de estado estacionario

Es el límite al que tiende la respuesta cuando el tiempo tiende a infinito. Para una entrada escalón unitario tiene un valor igual a la ganancia estática del sistema. Puede hallarse aplicando el teorema del valor final de la transformada de Laplace. La transformada de la respuesta es,

\[Y(s) = [y(t)] = U(s)T(s) \]

siendo \(U(s) \) la transformada de la entrada y \(T(s) \) la función de transferencia. Aplicando el teorema del valor final,

\[y_{ss} = \lim_{t \to \infty} y(t) = \lim_{s \to 0}[sY(s)] = \lim_{s \to 0}[sU(s)T(s)] \quad (5.3) \]

Pero la transformada de Laplace de la función escalón unitario es \(1/s \), luego

\[y_{ss} = \lim_{s \to 0}[\frac{1}{s}T(s)] = \lim_{s \to 0} T(s) \]

Respuesta de frecuencia

La respuesta de frecuencia de un sistema se define como la respuesta en en estado estacionario del sistema a una entrada sinusoidal [Ogata 82, sec. 9.2]. Como ya sabemos, para una entrada sinusoidal,

\[u(t) = A \sin(\omega t) \]

la respuesta en estado estacionario de un sistema lineal, con función de transferencia \(G(s) \), es también sinusoidal, de la forma

\[y_{ss}(t) = M \sin(\omega t + \phi), \quad M = |G(j\omega)|, \quad \phi = \angle G(j\omega) \]

La respuesta de frecuencia se suele expresar mediante diagramas en los que se representan el módulo y la fase en función de la pulsación \(\omega \). En la figura 5.2 se ha representado el diagrama de Bode de un sistema en el que se indican ciertos valores de la respuesta de frecuencia que se utilizan habitualmente y que tienen relación con las especificaciones de funcionamiento. Tales valores son:

- Frecuencias de corte. Generalmente el sistema tiene una zona, denominada zona de frecuencias medias, en que la ganancia \(|G(j\omega)| \) se mantiene prácticamente constante, siendo menor fuera de dicha zona. Las frecuencias de corte \(\omega_A \) y \(\omega_B \) son aquellas en que la ganancia \(M \) es inferior en 3 dB a la ganancia en la zona de frecuencias medias. En los sistemas de control es frecuente que \(\omega_A \) sea cero.
- Anchura de banda BW. Es la banda o intervalo de frecuencias comprendida entre la frecuencia de corte inferior \(\omega_A \) y la frecuencia de corte superior \(\omega_B \).
- Ganancia a frecuencias medias. A veces la ganancia del sistema a frecuencias comprendidas dentro de la anchura de banda se considera constante, con un valor de \(M = |G(j\omega_m)| \), siendo \(\omega_m \) un valor intermedio de la pulsación.
- Margen de fase y margen de ganancia. Son una medida de la estabilidad relativa de los sistemas.
El error es una variable que aparece en todo sistema de control como consecuencia de la realimentación negativa y es un índice relacionado directamente con la precisión del sistema [Ogata 82, cap. 7]. En el sistema de la figura 5.3 el error es ϵ. El error depende de la función de entrada $u(t)$ aplicada y del propio sistema definido por las funciones $G(s)$ y $H(s)$. Para facilitar el análisis del error, se define el tipo del sistema y se calcula el error en estado estacionario considerando unas funciones de entrada predefinidas.

\[
\begin{align*}
\text{Error de estado estacionario} & \\
& \text{Es el error existente para una entrada determinada cuando la variable de salida se ha estabilizado. Se calcula aplicando el teorema del valor final de la transformada de Laplace.}
\end{align*}
\]

\[
\epsilon_{ss} = \lim_{t \to \infty} \epsilon(t) = \lim_{s \to 0} s \epsilon(s)
\]

5.2. Análisis del error

El error es una variable que aparece en todo sistema de control como consecuencia de la realimentación negativa y es un índice relacionado directamente con la precisión del sistema [Ogata 82, cap. 7]. En el sistema de la figura 5.3 el error es ϵ. El error depende de la función de entrada $u(t)$ aplicada y del propio sistema definido por las funciones $G(s)$ y $H(s)$. Para facilitar el análisis del error, se define el tipo del sistema y se calcula el error en estado estacionario considerando unas funciones de entrada predefinidas.

\[
\begin{align*}
\text{Error de estado estacionario} & \\
& \text{Es el error existente para una entrada determinada cuando la variable de salida se ha estabilizado. Se calcula aplicando el teorema del valor final de la transformada de Laplace.}
\end{align*}
\]

\[
\epsilon_{ss} = \lim_{t \to \infty} \epsilon(t) = \lim_{s \to 0} s \epsilon(s)
\]

Figura 5.2: Respuesta de frecuencia

Figura 5.3: Sistema de Control
5.2. ANÁLISIS DEL ERROR

Si consideramos el sistema de la figura 5.3, el error vale

\[\epsilon(s) = U(s) - \epsilon(s)G(s)H(s) \]

y, por tanto,

\[\epsilon(s) = \frac{U(s)}{1 + G(s)H(s)} \] \hspace{1cm} (5.5)

Se llama trasmitancia de error \(W_E(s) \) a la función de transferencia que relaciona la entrada al sistema \(U(s) \) con el error \(\epsilon(s) \).

\[W_E = \frac{\epsilon(s)}{U(s)} = \frac{1}{1 + G(s)H(s)} \]

En los sistemas lineales, \(G(s) \) y \(H(s) \) son funciones racionales de \(s \). Por tanto podemos poner

\[G(s)H(s) = \frac{N(s)}{D(s)} \]

siendo \(N(s) \) y \(D(s) \) dos polinomios en \(s \). La trasmitancia de error puede expresarse ahora de la forma,

\[W_E(s) = \frac{D(s)}{N(s) + D(s)} \]

Mediante la expresión (5.5) podemos obtener \(\epsilon(t) \), hallando la antitransformada de Laplace, y el error de estado estacionario

\[\epsilon_{ss} = \lim_{s \to 0} s\epsilon(s) = \lim_{s \to 0} \frac{sU(s)}{1 + G(s)H(s)} \] \hspace{1cm} (5.6)

o bien,

\[\epsilon_{ss} = \lim_{s \to 0} \left[sU(s) \frac{D(s)}{N(s) + D(s)} \right] \] \hspace{1cm} (5.7)

Entradas de mando básicas

Para analizar el error de un sistema se utilizan, por simplicidad, las funciones de entrada básicas o normalizadas que son la función escalón, la función rampa, la función parábola y otras de orden superior en \(t \) (figura 5.4).

Figura 5.4: Funciones de prueba
Es interesante conocer el error del sistema para cada una de las funciones de mando básicas ya que, conocidas éstas, puede hallarse, por el principio de superposición, el error para una función de entrada cualquiera. En efecto, si la función de entrada es \(u(t) \), se puede desarrollar en serie de Taylor de la forma,

\[
u(t) = u(0) + \frac{\dot{u}(0)}{1!} t + \frac{\ddot{u}(0)}{2!} t^2 + \ldots\]

por lo que el error para la entrada \(u(t) \) será igual al error para entrada escalón más el error para entrada rampa etc.

Constantes de error

Las constantes de error de posición \(K_p \), de velocidad \(K_v \) y de aceleración \(K_a \) se definen, asociadas a las funciones básicas de entrada escalón, rampa y parábola, de la forma siguiente:

\[
K_p = \lim_{s \to 0} \left[G(s)H(s) \right] \quad K_v = \lim_{s \to 0} \left[sG(s)H(s) \right] \quad K_a = \lim_{s \to 0} \left[s^2G(s)H(s) \right]
\]

Ahora podemos hallar los errores de estado estacionario correspondientes a las entradas escalón, rampa y parábola, en función de estas constantes, aplicando la fórmula (5.6).

\[
\epsilon_{ss} = \lim_{s \to 0} \frac{sU(s)}{1 + G(s)H(s)}
\]

Si la entrada es un escalón, como \(u(t) = r_0 u(t) \) y \(U(s) = r_0 / s \), el error para entrada escalón es:

\[
\epsilon_{pss} = \lim_{s \to 0} \frac{r_0}{1 + G(s)H(s)} = \frac{r_0}{1 + K_p}
\]

Si la entrada es de tipo rampa, \(u(t) = v_0 t \), \(U(s) = v_0 / s^2 \) y el error para entrada rampa será:

\[
\epsilon_{vss} = \lim_{s \to 0} \frac{v_0}{s + sG(s)H(s)} = \frac{v_0}{K_v}
\]

Si la entrada es de tipo parábola, \(u(t) = \frac{a_0}{2} t^2 \), \(U(s) = a_0 / s^3 \), el error para entrada parábola es:

\[
\epsilon_{ass} = \lim_{s \to 0} \frac{a_0}{s^2 + s^2G(s)H(s)} = \frac{a_0}{K_a}
\]

Tipo de sistema

Se llama tipo de sistema al número de raíces nulas del numerador de la trasmitancia de error, o bien del denominador de la función, denominada función de transferencia en lazo abierto, \(G(s)H(s) \). Dicho de otra manera, es el número de integradores que tiene la función \(G(s)H(s) \). Sea \(p \) el tipo de un sistema definido por las funciones \(G(s) \) y \(H(s) \). La función de transferencia en lazo abierto del sistema es:

\[
G(s)H(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{s^p D_1(s)}
\]
siendo $D_1(s)$ un polinomio sin raíces nulas. La ecuación (5.3) puede ponerse en forma factorizada hallando las raíces de $N(s)$ y $D(s)$:

$$G(s)H(s) = \frac{K_{GH}}{s^p} \prod_{i=1}^{m}(a_is + 1)$$

Observése que la constante K_{GH} es equivalente a K_p para un sistema de tipo cero, a K_v para un sistema de tipo 1, y a K_a para un sistema de tipo 2.

Vamos a determinar cuanto vale el error de estado estacionario para cada una de las entradas básicas, y para cada tipo de sistema. Poniendo $N(s)$ y $D(s)$ en la forma factorizada y aplicando la fórmula (5.7) queda

$$\epsilon_{ss} = \lim_{s \to 0} \frac{sU(s)s^p \prod_{j=1}^{n}(a_js + 1)}{K_{GH} \prod_{i=1}^{m}(a_is + 1) + s^p \prod_{j=1}^{n}(a_js + 1)} = \lim_{s \to 0} \frac{s^{p+1}U(s)}{K_{GH} + s^p}$$

Mediante la fórmula (5.4) se ha confeccionado la tabla 4.1 que da los valores del error de estado estacionario para cada tipo de sistema y para entradas escalón, rampa y parábola.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Escalón</th>
<th>Rampa</th>
<th>Parábola</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{r_0}{1+K_{GH}}$</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$\frac{r_0}{K_{GH}}$</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>$\frac{a_0}{K_{GH}}$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Cuadro 5.1: Error de estado estacionario

Se puede deducir de esta tabla que, a medida que aumenta el tipo del sistema, disminuye el error. No obstante, ello implica la adición de integradores en la función de transferencia en lazo abierto $G(s)H(s)$, lo que puede afectar a la estabilidad.

Coeficientes de error

Se suelen denominar a veces coeficientes dinámicos de error y se utilizan para hallar el error en función del tiempo, con lo que no sólo podemos determinar el error de estado estacionario sino también el error dinámico. La expresión del error viene dada, en función de estos coeficientes, por

$$\epsilon(t) = C_0u(t) + \frac{C_1}{1!} \dot{r}(t) + \frac{C_2}{2!} \ddot{u}(t) + \ldots + \frac{C_n}{n!} \frac{(n)}{u(t)}$$

siendo $C_0, C_1, C_2, \ldots, C_n$ los coeficientes de error y $u(t)$ la entrada de referencia. Para hallar los coeficientes de error ha de aplicarse la integral de convolución al cálculo de $\epsilon(t)$:

$$\epsilon(t) = \int_0^t w_E(\tau)u(t-\tau)d\tau$$

siendo $w(t)$ la transformada inversa de la trasmitancia de error

$$W(s) = \frac{1}{1 + G(s)H(s)}$$
Si existen las primeras derivadas de $u(t)$, la función $u(t - \tau)$ puede desarrollarse en serie de Taylor de la forma:

$$u(t - \tau) = u(t) - \tau \dot{u}(t) + \frac{\tau^2}{2!} \ddot{u}(t) - \ldots$$

Aplicando la fórmula (5.8) para el cálculo de $\epsilon(t)$ y tomando el valor final de la expresión resultante, se deduce que los coeficientes de error vienen dados por las expresiones siguientes:

$$C_0 = \lim_{s \to 0} w_E(s),$$
$$C_1 = \lim_{s \to 0} \frac{dw_E}{ds},$$
$$C_2 = \lim_{s \to 0} \frac{d^2w_E}{ds^2},$$
$$\vdots$$
$$C_n = \lim_{s \to 0} \frac{d^n w_E}{ds^n}$$

5.3. Sensibilidad a las variaciones de los parámetros

La sensibilidad de un sistema a las variaciones de los parámetros expresa el cambio que se produce en su comportamiento al cambiar el valor de tales parámetros [2, sec. 5.3]. En términos matemáticos, la sensibilidad de una función F respecto a otra función P se define como el cociente entre la variación relativa de F y la variación relativa de P, y se denota por S_F^P.

$$S_F^P = \frac{dF/F}{dP/P} = \frac{d(\ln F)}{d(\ln P)} = \frac{P}{F} \frac{dF}{dP}$$

(5.9)

Un sistema de control cuyas funciones de sensibilidad tienen valores reducidos se suele denominar sistema robusto. En nuestro caso F es una función de la variable compleja s, que representa una función de transferencia que determina el comportamiento del sistema, y P es un parámetro o función cuya variación hace que F también varíe. En la figura (5.5) se representa un sistema compuesto por dos bloques en cascada, con funciones de transferencia G_1 y G_2, y otro formado por los mismos bloques en lazo cerrado. Vamos a hallar la sensibilidad del sistema, en ambos casos, con respecto a las variaciones de G_1. En el primer caso los bloques G_1 y G_2 están en cascada. La función de transferencia total del sistema es

$$F = G_1G_2$$

Según (5.9) la sensibilidad respecto del parámetro G_1 es:

$$S_{G_1}^F = \frac{G_1}{F} \frac{dF}{dG_1} = \frac{G_1}{G_1G_2}G_2 = 1$$

Este resultado indica que, en éste sistema de lazo abierto, a una variación reactiva en el parámetro P corresponde una variación relativa idéntica en F y por lo tanto en su respuesta.

El segundo caso es un sistema con realimentación negativa de la salida a través del bloque G_2. La función de transferencia es:

$$F = \frac{G_1}{1 + G_1G_2}$$
5.4. SENSIBILIDAD A LAS VARIABLES PERTURBADORAS

La sensibilidad respecto del parámetro G_1 es ahora:

$$S_{G_1}^F = \frac{G_1}{F} \frac{dF}{dG_1} = \frac{1}{1 + G_1 G_2}$$

Lo que indica que la sensibilidad respecto a la variación del parámetro G_1 se ha dividido por un factor $(1 + G_1 G_2)$ en relación al caso anterior. Sin embargo, si hallamos la sensibilidad respecto al parámetro G_2, elemento de realimentación,

$$S_{G_2}^F = \frac{G_2}{F} \frac{dF}{dG_2} = \frac{G_2}{F} \left(1 + G_1 G_1\right)^2 = \frac{-G_1 G_2}{1 + G_1 G_2} \approx -1$$

vemos que el sistema es muy sensible sus variaciones.

5.4. Sensibilidad a las variables perturbadoras

Hasta ahora se ha analizado la respuesta temporal y algunas especificaciones como la precisión de los sistemas de control, considerando que la entrada o entradas al sistema son señales de referencia o mando deseadas e impuestas al sistema para obtener un determinado comportamiento. Los sistemas se ven a menudo afectados por otras entradas no deseadas, de origen diverso, que se aplican en algunos de sus componentes. Este tipo de entradas se suelen denominar entradas perturbadoras y suelen producirse por ruidos que afectan a las entradas de mando, variaciones inevitables en los parámetros del sistema o cambios en el medio en que está actuando el sistema [2, sec. 5.4]. En los casos en que no sea posible eliminar las entradas perturbadoras puede reducirse su efecto por medio de la realimentación negativa. Consideremos la entrada no deseada d del diagrama de bloques de la figura 5.6.

Las funciones de transferencia relativas a la salida y con relación a cada una de las entradas
CAPÍTULO 5. FUNCIONAMIENTO DE LOS SISTEMAS DE CONTROL

Figura 5.6: Sistema de control con entrada perturbadora

son:

\[
\begin{align*}
Y(s) &= G_1 G_2 \\
U(s) &= 1 + G_1 G_2 H \\
Y(s) &= G_2 \\
D(s) &= 1 + G_1 G_2 H
\end{align*}
\]

Los polinomios característicos de ambas ecuaciones son idénticos pero los numeradores difieren en el factor \(G_1\) de la primera. Para atenuar el efecto de la entrada \(d\) se deberá hacer cumplir la condición \(G_1 \gg G_2\), actuando sobre los componentes del sistema.

5.5. Indíces de comportamiento de los sistemas

En el diseño de un sistema de control de tipo SISO (Single Input Single Output) pueden utilizarse como índices de funcionamiento los valores característicos de la respuesta temporal o de la respuesta de frecuencia que hemos visto en el presente capítulo [Ogata 82, sec. 7.3]. Mediante éstos índices se establecen criterios de control que, aplicados al diseño de los componentes de los sistemas, pueden determinar los valores óptimos de ciertos parámetros. Por ejemplo, puede establecerse como criterio minimizar el tiempo de respuesta del sistema. Para ello podría tomarse como índice de comportamiento del sistema el tiempo de subida \(t\) definido por la curva de respuesta temporal de la figura 5.1. Quizás sea más conveniente, en otro sistema de control, el criterio de minimizar el error de estado estacionario. Suelen así mismo adoptarse otros índices de calidad del sistema tales como

\[
\int_0^t e^2(t) d(t), \quad \int_0^t |e(t)| dt, \quad \int_0^t t |e(t)| dt
\]

En la teoría de control moderna, aplicable a sistemas MIMO (Múltiple Input Múltiple Output) el índice \(I\) de comportamiento que ha de minimizarse para establecer un control óptimo suele tener la forma

\[
I = \int_{t_0}^{t_f} f[x(t), u(t), t] d(t)
\]

en la que \(x(t)\) es el vector de estado, \(u(t)\) el vector de entradas y \(f\) la función objetivo. Se han desarrollado diferentes métodos de diseño como el de asignación de polos, controlador óptimo y otros basados en la teoría de la programación lineal y en la estadística.
5.6. Estabilidad de los sistemas de control

La estabilidad es la más importante entre las especificaciones de funcionamiento. Más aún, es una condición \textit{necesaria} para un aceptable comportamiento dinámico del sistema \cite[chap. 7]{Kuo82}.

Como ya hemos estudiado, la respuesta de un sistema de control cuyo modelo externo es una función de transferencia de orden \(n \) se basa en las raíces \(s_i \), \(i = 1, \ldots, n \) de su ecuación característica. Si alguna de las raíces \(s_i \) tiene parte real positiva, el término exponencial correspondiente de la respuesta, dada por

\[
y(t) = \sum_{i=1}^{n} k_i e^{s_i t}
\]

tiende a infinito y el sistema es inestable. La inestabilidad de un sistema origina un funcionamiento incorrecto del mismo, al quedar la respuesta fuera de los límites aceptables y puede, en ocasiones, causar la destrucción del sistema o de algunos de sus componentes.

Pero no sólo se requiere una respuesta estable del sistema definido por los valores actuales de los parámetros asociados a sus componentes (estabilidad absoluta), sino que tal respuesta debe permanecer estable aunque determinados parámetros sufran ciertas variaciones (estabilidad relativa).

\textbf{Estados de equilibrio}

Supongamos que el modelo de un sistema dinámico es la ecuación diferencial

\[
\dot{x} = f(x, t)
\]

en donde \(x \in \mathbb{R}^n, t \in \mathbb{R}, f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \) y supongamos que la función \(f \) satisface las condiciones necesarias para la existencia y unicidad de la solución \(x(t) \). Si \(f(x, t) \) no depende explícitamente de \(t \) decimos que el sistema dinámico es \textit{autónomo}. Por ejemplo, un péndulo que oscila libremente (figura 5.7), sin fuerzas exteriores, es un sistema autónomo. En efecto, aplicando la 2a ley de

![Figura 5.7: Estado de equilibrio de un péndulo](image)
Newton, la ecuación diferencial de este sistema es

\[m l^2 \frac{d^2 \theta(t)}{dt^2} = -m g l \sin \theta(t) \]

es decir,

\[\frac{d^2 \theta(t)}{dt^2} = -\frac{g}{l} \sin \theta(t), \]
cuyo segundo miembro no depende de \(t \) en forma explícita. Si hacemos \(\theta = x_1, \dot{\theta} = x_2 \), obtenemos como modelo de estado

\[\dot{x}_1(t) = x_2(t) \]
\[\dot{x}_2(t) = -\frac{g}{l} \sin x_1(t) \]

Una noción que todo el mundo intuye es la de punto de equilibrio. En el caso del péndulo, un punto de equilibrio es el definido por las condiciones iniciales \(\alpha(t) = 270^\circ, \alpha'(t) = 0 \) puesto que, con esa posición y velocidad iniciales y en ausencia de fuerzas exteriores, no se moverá. Con la notación habitual en el espacio de estado, dicho punto de equilibrio es

\[x_{e1} = \begin{bmatrix} x_{e1} \\ x_{e2} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \pi \\ 0 \end{bmatrix} \]

Otro punto de equilibrio es \(x_{e2} = [\frac{1}{2} \pi, 0]^T \).

Se dice que un sistema dinámico definido por la ecuación diferencial (5.10) tiene un punto o estado de equilibrio en \(x = x_e \), siendo \(x_e \) un vector constante, si se cumple que \(f(x_e, t) = 0 \) para todo \(t \). Se deduce de (5.10) que, si \(x(t_0) = x_e \), entonces \(x(t) = x_e \) para todo \(t > t_0 \). Es decir que toda solución \(x(t) \) cuyo punto inicial es \(x(t_0) = x_e \) permanece en el mismo punto \(x_e \). Un punto de equilibrio se denomina aislado si en un entorno de dicho punto no existe otra solución constante.

Si realizamos el cambio \(x' = x - x_e \) se ve que el punto de equilibrio \(x_e \) se traslada al origen del espacio de estado en las nuevas variables de estado \(x' \). Por ello se suele considerar habitualmente el origen como punto de equilibrio.

Estabilidad

La estabilidad de un sistema puede definirse con diferentes criterios que han dado lugar a sucesivos conceptos de estabilidad aunque con significados equivalentes. Podemos pensar intuitivamente que un sistema dinámico es estable en un punto \(x_e \) de equilibrio si una "pequeña" perturbación de dicho estado en un instante \(t_0 \) produce una evolución dinámica también "pequeña" para \(t > t_0 \). Volviendo al ejemplo del péndulo, se ve que este sistema es estable en el estado de equilibrio \(x_{e1} = [\frac{3}{2} \pi, 0]^T \), pero es inestable en el punto \(x_{e2} = [\frac{1}{2} \pi, 0]^T \).

Otro ejemplo en el que se podemos apreciar la idea de estabilidad es el representado en la figura (5.8). Se trata de una bola colocada en una depresión topográfica (a), en la cúspide de una altitud (b) y en un punto de un valle elevado (c). Vamos a suponer que existe rozamiento y que, a partir de cada posición de equilibrio, se impone un pequeño desplazamiento a la bola. Sabemos por la experiencia que en el caso (a) la bola se moverá de forma oscilante hasta que finalmente quedará en reposo en el mismo estado de equilibrio que antes (equilibrio estable). En el caso (b), un pequeño desplazamiento hará que la bola caiga al precipicio (equilibrio inestable). Por último, en el caso (c), un pequeño desplazamiento hará que la bola vuelva a su posición de equilibrio estable, como en el caso (a), pero un desplazamiento mayor puede hacer que la bola pase a una nueva posición de equilibrio estable o incluso, para un desplazamiento aún mayor, caiga al precipicio.
5.6. ESTABILIDAD DE LOS SISTEMAS DE CONTROL

Por estos y otros ejemplos podemos pensar que el concepto de estabilidad no parece del todo simple. Así es, y por ello se ha definido de muchas formas a lo largo del tiempo. A continuación se da la definición de Lyapunov.

Definición 1 [Estabilidad]

Se dice que un estado de equilibrio en $x = 0$ es

(i) **Estable**: si para cualquier escalar $\epsilon > 0$ existe un escalar δ tal que $\|x(t_0)\|_e < \delta$ implica $\|x(t)\|_e < \epsilon$ para todo $t \geq t_0$.

(ii) **Asintóticamente estable**: si es estable y si, además, $x \to 0$ cuando $x \to \infty$

(iii) **Inestable**: si no es estable.

La figura (5.9) puede ayudar a comprender esta definición. En ella se ha representado una posible trayectoria en \mathbb{R}^2 y dos círculos de radios δ y ϵ. Decimos que el sistema es estable si para
cada ϵ existe un δ tal que si el estado inicial x_0 está dentro del círculo de radio δ entonces la trayectoria $x(t)$ queda dentro del círculo de radio ϵ, para $t \geq t_0$.

Prueba de Routh-Hurwitz

Si la ecuación característica del sistema se halla en forma factorizada, la estabilidad del sistema puede determinarse de modo inmediato por inspección de las raíces. Si hay alguna raíz con parte real positiva el sistema es inestable. La prueba de Routh es un método para averiguar el número de raíces de la ecuación característica que se encuentran en la mitad derecha del plano complejo, es decir, tienen parte real positiva [Kuo 82, sec. 7.5]. Consideremos un sistema cuya ecuación característica sea

$$a_n s^n + a_{n-1}s^{n-1} + \ldots + a_2 s^2 + a_1 s + a_0 = 0 \quad (5.11)$$

Una condición necesaria para que las raíces de la ecuación tengan todas la parte real negativa es que todos los coeficientes de dicha ecuación tengan todos el mismo signo y que no haya ninguno nulo.

La condición necesaria y suficiente para que las raíces de la ecuación característica se encuentren ubicadas en el semiplano derecho es que los determinantes de Hurwitz D_1, D_2, \ldots, D_n de dicha ecuación sean todos positivos. Los determinantes de Hurwitz correspondientes a la ecuación característica (5.11) están definidos de la siguiente manera:

$$D_1 = a_{n-1}, \quad D_2 = \begin{vmatrix} a_{n-1} & a_{n-3} \\ a_n & a_{n-2} \end{vmatrix}, \quad D_3 = \begin{vmatrix} a_{n-1} & a_{n-3} & a_{n-5} \\ a_n & a_{n-2} & a_{n-4} \\ 0 & a_{n-1} & a_{n-3} \end{vmatrix}$$

$$D_n = \begin{vmatrix} a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \cdots \\ a_n & a_{n-2} & a_{n-4} & a_{n-6} & \cdots \\ 0 & a_{n-1} & a_{n-3} & a_{n-5} & \cdots \\ 0 & 0 & a_{n-2} & a_{n-4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & a_0 \end{vmatrix}$$

Para evitar el cálculo de determinantes de orden elevado se forma la tabla de Routh, de la forma que continuación se indica.

Las primera fila se forma con los coeficientes pares y la segunda con los impares. Las sucesivas filas se forman a partir de las dos primeras del modo siguiente:

$$b_1 = \begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}, \quad b_2 = \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}, \quad b_3 = \begin{vmatrix} a_n & a_{n-6} \\ a_{n-1} & a_{n-7} \end{vmatrix}$$

$$c_1 = \begin{vmatrix} a_{n-1} & a_{n-3} \\ b_1b_2 \end{vmatrix}, \quad c_2 = \begin{vmatrix} a_{n-1} & a_{n-5} \\ b_1b_3 \end{vmatrix}, \quad c_3 = \begin{vmatrix} a_{n-1} & a_{n-7} \\ b_1b_4 \end{vmatrix} \quad (5.12)$$

De este modo se calculan los coeficientes y se van colocando en la tabla de Routh como se indica en la tabla 5.2. El proceso continúa hasta la fila $n + 1$. El criterio de Routh establece que la condición necesaria y suficiente para que todas las raíces de la ecuación característica tengan parte real negativa es que todos los elementos de la primera columna de la tabla tengan el mismo signo. De otro modo, el número de cambios de signo habidos en los elementos de dicha columna es igual al número de raíces de la ecuación característica con parte real positiva. Puede probarse
que la condición de los determinantes de Hurwitz es equivalente a la condición de los elementos de la primera columna de la tabla de Routh.

Si en la primera columna de la tabla de Routh aparece algún elemento nulo, el método falla por producirse división entre cero. Debe entonces sustituirse cada elemento nulo por un arbitrario, pequeño y positivo número ϵ, tal que $0 < \epsilon < 1$, procediendo a realizar el citado algoritmo.

Si es cero un elemento de la primera columna y son además nulos todos los elementos de la fila correspondiente, debe hallarse, en primer lugar, la ecuación auxiliar cuyos coeficientes son los de la fila de encima a la de coeficientes nulos. Algunas raíces de la ecuación característica se obtienen resolviendo la ecuación auxiliar. Luego se divide el polinomio característico por el polinomio de la ecuación auxiliar, y se aplica la prueba de Routh al resultado de la división.

La prueba de Routh sirve también para determinar intervalos de ciertos parámetros ajustables para los cuales el sistema es estable. Para ello se forma una tabla de Routh que puede tener elementos expresados como función de parámetros. Expresando la condición de que no exista ningún cambio de signo en la primera columna de la tabla, resultarán las relaciones que deben de cumplir los parámetros para asegurar la estabilidad.

Estabilidad relativa

El criterio de Routh es un método rápido de análisis de la estabilidad de un sistema de control sin hallar las raíces de la ecuación característica. No solo sirve para hallar la estabilidad absoluta sino que puede utilizarse para hallar la estabilidad relativa. Se define la estabilidad relativa como la distancia entre el eje imaginario y la raíz de la ecuación característica más próxima al mismo. Para hallar la estabilidad relativa por el criterio de Routh se debe proceder por tanteo. Si un sistema dado es estable, la prueba de Routh nos dirá que todas las raíces queden en el semiplano izquierdo complejo. Desplazamos los ejes hacia la izquierda una distancia arbitraria a, haciendo el cambio de variable $s = z - a$, y volvemos a aplicar la regla de Routh. Si, por no existir cambios de signo en la primera columna de la tabla, las raíces vuelven a quedar en el semiplano izquierdo, la estabilidad relativa será de, por lo menos, a unidades.

5.7. Controlabilidad y Observabilidad

Dado el modelo lineal de un sistema dinámico

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t)
\]
CAPÍTULO 5. FUNCIONAMIENTO DE LOS SISTEMAS DE CONTROL

en donde $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, sabemos que si $u(t)$ es una función continua (o continua a trozos), la solución $x(t)$ de la ecuación diferencial con la condición inicial $x(0) = x_0$ tiene una única solución, que viene dada por la expresión

$$x(t) = e^{At} x(0) + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

Para demostrar esta fórmula, multipliquemos ambos miembros de (5.13) por e^{At}, por la izquierda:

$$e^{At} \dot{x}(t) = e^{At} Ax(t) + e^{At} Bu(t)$$

Teniendo en cuenta que

$$\frac{d}{dt} [e^{-At} x(t)] = -e^{-At} Ax(t) + e^{-At} \dot{x}(t)$$

queda

$$\frac{d}{dt} [e^{-At} x(t)] = e^{At} Bu(t)$$

e, integrando, obtenemos la solución:

$$x(t) = e^{At} \left[x(0) + \int_0^t e^{-A\tau} Bu(\tau) d\tau \right]$$

Si el instante inicial es $t = t_0$ en vez de $t = 0$, las condiciones iniciales serán $x_0 = x(t_0)$ y la expresión de la solución es entonces

$$x(t) = e^{A(t-t_0)} \left[x(t_0) + \int_{t_0}^t e^{-A(\tau-t_0)} Bu(\tau) d\tau \right] \quad (5.14)$$

A veces se utiliza la notación

$$\phi(t, t_0) := e^{A(t-t_0)}$$

en donde $\phi(t, t_0)$ se denomina matriz de transición entre estados. Es fácil ver que tiene las siguientes propiedades

1. $\frac{d}{dt} \phi(t, t_0) = A \phi(t, t_0)$

2. $\phi(t, t) = I_n$

3. $\phi(t_0, t) = \phi^{-1}(t, t_0)$

4. $\phi(t, t_0) = \phi(t, t_1) \phi(t_1, t_0), \quad t_0 \leq t_1 \leq t$

Utilizando la matriz de transición, la solución se escribe

$$x(t) = \phi(t, t_0) \left[x(t_0) + \int_{t_0}^t \phi(t_0, \tau) Bu(\tau) d\tau \right] \quad (5.15)$$
5.7. CONTROLABILIDAD Y OBSERVABILIDAD

Controlabilidad

Ya sabemos hallar la solución del sistema (5.13), aplicando la fórmula (5.15). Dado que el estado \(x(t) \) del sistema pertenece al espacio vectorial \(\mathbb{R}^n \), obviamente hay en el mismo un número infinito de estados. Nos plantemos el siguiente problema: ¿Es controlable el sistema? Es decir, ¿es posible, por medio del control, alcanzar todos los estados? Más exactamente, dados dos estados cualesquiera, uno inicial \(x(t_0) = x_0 \) y otro \(x_1 \), ¿existirá algún vector de entrada \(u(t) \) tal que la solución \(x(t) \) del sistema, para un tiempo finito \(t = t_1 > t_0 \), valga \(x(t_1) = x_1 \)?

Definición 2 Se dice que el sistema (5.13) es completamente controlable (o, sin más, controlable) si, dado un instante inicial \(t_0 \) y dados dos estados cualesquiera, uno inicial \(x(t_0) = x_0 \) y otro \(x_f \), existe un tiempo \(t_1 > t_0 \) y un vector de control \(u(t), \) \(t_0 \leq t \leq t_1 \), tales que \(x(t_1) = x_f \).

Es fácil ver (realizando el cambio de coordenadas \(x' = x - x_f \)) que siempre podemos considerar que el estado final es el origen del espacio de estado, es decir, \(x_f = 0 \). Por ello, no se pierde generalidad si en los razonamientos suponemos \(x_f = 0 \).

Si en la fórmula (5.14) ponemos \(t_0 = 0 \), \(x(0) = x_0 \), \(x_f = 0 \), queda

\[
-x(0) = \int_0^{t_1} e^{-A\tau} Bu(\tau)d\tau
\]

y, simplificando,

\[
-x(0) = \int_0^{t_1} e^{-A\tau} Bu(\tau)d\tau
\]

Consideremos el conjunto

\[
\Gamma_{t_1} = \left\{ \int_0^{t_1} e^{-A\tau} Bu(\tau)d\tau : u(t) \in C^z[0,t_1] \right\}
\]

en donde \(C^z[0,t_1] \) denota el espacio lineal de las funciones continuas a trozos, con discontinuidades de salto finito, en \([0,t_1]\). Podemos considerar que el conjunto \(\Gamma_{t_1} \) está definido por la aplicación lineal

\[
C^z[0,t_1] \rightarrow \mathbb{R}^n
\]

\[
u(t) \rightarrow \int_0^{t_1} e^{-A\tau} Bu(\tau)d\tau
\]

con lo que \(\Gamma_{t_1} \) es un subespacio vectorial que se denomina subespacio de controlabilidad. Como vamos a ver a continuación, la matriz \(Q \in \mathbb{R}^{n \times nm} \) dada por

\[
Q = [B \ AB \ A^2B \ldots \ A^{n-1}B]
\]

está estrechamente relacionada con el problema que estamos estudiando y se llama matriz de controlabilidad.

Teorema 5.7.1 El sistema

\[
\dot{x}(t) = Ax(t) + Bu(t) \quad (5.16)
\]

en donde \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \), es controlable si y sólo si la matriz de controlabilidad \(Q \) tiene rango \(n \),

Demostración:

a) Necesidad: Sistema controlable \(\implies \text{rg } Q = n \)
Supongamos que el sistema es controlable. Para probar que \(\text{rg} \ Q = n \) vamos a ver que la condición contraria, \(\text{rg} \ Q < n \), nos lleva a una contradicción.

Si \(\text{rg} \ Q < n \), las filas de la matriz \(Q \) son linealmente dependientes, por lo que ha de existir un vector no nulo \(q \in \mathbb{R}^n \) tal que

\[
qB = 0, \quad qAB = 0, \quad qA^2B = 0, \ldots, \quad qA^{n-1}B = 0
\]

Sabemos que la solución del sistema (5.16) es

\[
x(t) = e^{At}[x(0) + \int_0^t e^{-A\tau}Bu(\tau)d\tau]
\]

Sea \(t_0 = 0 \), \(x(0) = x_0 \) e impongamos que \(x(t) = 0 \) para \(t = t_1 > 0 \), lo cual puede hacerse por ser el sistema controlable. Entonces tenemos

\[
x(t_1) = 0 = e^{At}[x(0) + \int_0^{t_1} e^{-A\tau}Bu(\tau)d\tau]
\]

Sabemos, por la teoría de matrizes [?, p.69], que la función exponencial matricial \(e^{-At} \) se puede expresar como polinomio en \(A \) de grado, a lo sumo, \(n - 1 \), de la forma

\[
e^{-At} = r_0I + r_1A + \ldots + r_{n-1}A^{n-1}
\]

en donde \(r_i \), \(i = 0, \ldots, n - 1 \), son funciones escalares de \(\tau \) que pueden calcularse. Sustituyendo en la ecuación anterior y simplificando, queda

\[
-x_0 = -\int_0^{t_1} (r_0I + r_1A + \ldots + r_{n-1}A^{n-1})Bu(\tau)d\tau
\]

Multiplicando por la izquierda por \(q \) tenemos

\[
qx_0 = -\int_0^{t_1} (qr_0I + qr_1A + \ldots + qr_{n-1}A^{n-1})Bu(\tau)d\tau
\]

pero, según (5.17), ha de ser \(qB = 0, \ qAB = 0, \ldots, \ qA^{n-1}B = 0 \), de donde resulta que

\[
qx_0 = 0
\]

Al ser el sistema completamente controlable, esto ha de ser válido para cualquier \(x_0 \), es decir \(\forall x_0 : \ qx_0 = 0 \), lo cual implica que ha de ser \(q = 0 \).

Hemos llegado a una contradicción y, por tanto, se ha de verificar que

\[
\text{rg} \ Q = n
\]

b) \textbf{Suficiencia}: \(\text{rg} \ Q = n \implies \) Sistema controlable.

Suponiendo que \(\text{rg} \ Q = n \), vamos a probar que, para cualquier estado inicial \(x_0 \), existe un control \(u(t) \), \(0 \leq t \leq t_1 \), que, sustituido en (5.18), hace que \(x(t_1) = 0 \). Vamos a “fabricar” una función \(u(t) \) cumpla esto. Para ello vamos a utilizar la matriz simétrica constante

\[
M = \int_0^{t_1} e^{-A\tau}BB^Te^{-AT\tau}d\tau
\]
y su forma cuadrática asociada

\[\alpha^T M \alpha = \int_0^{t_1} \alpha^T e^{-A \tau} B B^T e^{A^T \tau} \alpha \, d\tau \]

\[= \int_0^{t_1} \phi(\tau) \phi^T(\tau) \, d\tau \]

\[= \int_0^{t_1} \|\phi(\tau)\|^2 \, d\tau \geq 0 \]

(5.19)

En donde \(\alpha \in \mathbb{R}^n \). Está claro que \(M \) es semidefinida positiva y que será singular si y sólo si existe un vector no nulo \(\hat{\alpha} \in \mathbb{R}^n \) tal que

\[\hat{\alpha}^T M \hat{\alpha} = 0 \]

(5.20)

ya que entonces \(\text{Ker} M \neq \{0\} \). Pero, si fuera así, según (5.20) y por la propiedad de la norma euclídea de matrices que dice \(||A|| = 0 \iff A = 0 \), entonces debería ser \(\phi(\tau) = 0, \ 0 \leq \tau \leq t_1 \). Ahora bien, como

\[e^{At} = I_n + At + A^2 \frac{t^2}{2!} + A^3 \frac{t^3}{3!} + \ldots \]

tenemos que

\[\phi(\tau) = \hat{\alpha}^T e^{-A \tau} = \hat{\alpha}^T (I_n - A \tau + A^2 \frac{\tau^2}{2!} - A^3 \frac{\tau^3}{3!} + \ldots) B = 0, \ \ 0 \leq \tau \leq t_1 \]

de donde se deduce que

\[\hat{\alpha}^T B = 0, \ \hat{\alpha}^T A B = 0, \ \hat{\alpha}^T A^2 B = 0, \ \ldots \]

y, por tanto, \(\hat{\alpha}^T Q = 0 \). Pero esto no es posible ya que, por hipótesis, \(\text{rg} Q = n \). Por tanto no puede existir un vector \(\hat{\alpha} \) que verifique (5.20), como habíamos supuesto, y resulta que la matriz \(M \) no es singular.

Si ahora tomamos como vector “fabricado” de control

\[u(t) = -B^T e^{A^T t} M^{-1} x_0, \ \ 0 \leq t \leq t_1, \]

sustituyendo en (5.18) para \(t = t_1 \) queda

\[x(t_1) = e^{A t_1} [x_0 - \int_0^{t_1} e^{-A \tau} M^{-1} x_0 d\tau] \]

\[= e^{A t_1} [x_0 - MM^{-1} x_0] = 0 \]

que era lo que queríamos y, por tanto, el sistema es controlable.

\[\square \]

Observabilidad

En un sistema dinámico las variables accesibles, observables si se quiere, son las salidas. En cambio, las variables de estado son variables internas que, en principio, no son accesibles ni, por tanto, observables, al menos directamente. La observabilidad es la cualidad que permite, cuando existe, determinar las variables de estado de un sistema dinámico a partir de las variables de salida del mismo.
Definición 3 Se dice que un sistema dinámico lineal, definido por
\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t)
\end{align*}
\] (5.21)
es completamente observable o, sin más, observable, si para cualquier instante inicial \(t_0\) y para cualquier estado inicial \(x(t_0) = x_0\) existe un tiempo finito \(t_1 > t_0\) tal que el conocimiento de \(u(t)\) y de \(y(t)\) para \(t_0 < t < t_1\) es suficiente para determinar \(x_0\) de forma única.

Teorema 5.7.2 El sistema dinámico lineal y de coeficientes constantes (5.21) es observable si y sólo si la matriz de observabilidad \(R \in \mathbb{R}^{m \times n}\),
\[
R := \begin{bmatrix}
C \\
CA \\
CA^2 \\
\vdots \\
CA^{n-1}
\end{bmatrix},
\]
tiene rango igual a \(n\).

La demostración es parecida a la del teorema (5.7.1). Ver [?, p.113].
Bibliografía

[Kuo 82] B. Kuo
Sistemas Automáticos de Control
Ed. Continental, 1982

[Maltab]
MATLAB Reference Guide
The MathWorks Inc., 1994

[Ogata 82] K. Ogata
Ingeniería de Control Moderna
Prentice Hall International, 1982

[Ogata 87] K. Ogata
Discrete-Time Control Systems
Prentice Hall International, 1987
Capítulo 6

Sistemas de Tiempo Discreto

6.1. Introducción

El progresivo perfeccionamiento y la disminución del coste de los microprocesadores, desde su aparición en 1971, ha permitido su utilización en aplicaciones diversas entre las que destacan las de control. En la actualidad los sistemas de control basados en microprocesadores pueden competir en precio con los diseñados con componentes analógicos, incluso en sistemas monovariables, siendo de prestaciones muy superiores. Un controlador digital puede realizar la función de un controlador analógico en un sistema de regulación. Pero además, el controlador digital puede realizar procesos de control mucho más complejos y precisos no sólo en sistemas monovariables sino también en los multivariables. Además de la tarea de control el microprocesador puede realizar otras como, por ejemplo, el almacenamiento de datos en la memoria, la visualización de resultados, la comunicación con otros controladores u ordenadores para intercambio de datos, la supervisión del proceso, cálculos de todo tipo, y otras muchas, inimaginables en un sistema de control de tipo analógico. Por todo ello los sistemas de control digital se han extendido desde las tradicionales aplicaciones aeroespaciales y militares hasta otras de consumo como, por ejemplo, la industria automovilística y los electrodomésticos.

6.2. Sistemas de tiempo discreto

Para un estudio detallado de estos sistemas vease [Ogata 87]. Los sistemas de tiempo discreto son aquellos cuyas magnitudes sólo pueden tomar un número finito de valores las cuales son funciones de la variable discreta tiempo (figura 6.1). Los sistemas físicos existentes en la Naturaleza son siempre de tiempo continuo. Los sistemas de tiempo discreto surgen de una manera...

Figura 6.1: Señales de tiempo continuo y discreto
artificial al considerar, por diferentes razones, que los valores de las variables sólo existen para valores discretos del tiempo.

6.2.1. Sistemas intrínsecamente discretos

Existen sistemas inherentemente discretos, como son los sistemas electrónicos digitales secuenciales síncronos, en los que las transiciones entre estados sólo ocurren en instantes discretos de tiempo dados por un oscilador. Así, aunque las señales existen para todos los valores del tiempo, el sistema solo es activo en los instantes que va marcando el reloj; en el resto del tiempo el sistema permanece estático, no cambia. Los computadores son un claro ejemplo de este tipo de sistemas.

Filtros digitales

Son también sistemas intrínsecamente discretos son los *filtros digitales*. Un filtro digital es un programa de computador que opera sobre una secuencia numérica de entrada y obtiene como resultado otra secuencia numérica de salida.

Dicretización del tiempo por razones de cálculo

En cierto sentido pueden considerarse discretos los sistemas que, siendo continuos, se discretizan a efectos de cómputo por resultar así más sencilla la obtención de resultados por ordenador. Ello permite la obtención de modelos digitales de sistemas continuos y su resolución por ordenador.

6.2.2. Sistemas controlados por computador

Los sistemas de control por computador son sistemas *mixtos*, es decir, tienen una parte o subsistema que evoluciona en tiempo continuo y otra que lo hace en tiempo discreto. El subsistema de tiempo discreto se suele denominar *controlador digital*. Este, en instantes discretos de tiempo, muestra un conjunto de señales del subsistema continuo, las procesa y las transmite de nuevo al sistema. Estos sistemas, cuya naturaleza es continua en parte, son discretos desde el punto de vista del controlador que sólo conoce los valores de las señales en instantes discretos. En la figura 6.2 se representa el diagrama de bloques de uno de estos sistemas [?].
6.3. SISTEMAS DE TIEMPO CONTINUO MUESTREADOS

Sistemas de eventos discretos

En estos sistemas existen procesos que evolucionan de modo concurrente, es decir, simultáneamente. Cada proceso puede estar gobernado localmente por un sistema digital apropiado, con frecuencia un autómata programable, y todos los procesos están controlados por un computador central. Este computador puede estar a su vez conectado con otros mediante una red de área local (LAN).

Su estudio abarca ciertas áreas técnicas como automatismos, sistemas operativos de tiempo real, buses de conexión de periféricos y redes locales así como otras más teóricas como son los distintos modelos matemáticos existentes, entre los que podemos citar, GRAFCET, redes de Petri [1] y las teorías sobre procesos estocásticos y procesos de colas. Su campo de aplicación es la automatización de procesos industriales.

6.3. Sistemas de tiempo continuo muestreados

El proceso de muestreo de una señal analógica consiste en sustituir la señal original continua en el tiempo por una secuencia de valores que corresponden a instantes discretos de tiempo [2, sec. 11.1]. En la figura 6.1, \(x(t) \) se ha representado una señal continua en el tiempo. El muestreo de esta señal consiste en obtener la secuencia \(x^*(t_0), x^*(t_1), x^*(t_2), x^*(t_3), \ldots \) correspondiente a los valores de \(x(t) \) en los instantes \(t_0, t_1, t_2, t_3, \ldots \). A este proceso sigue otro de cuantificación que consiste en convertir los valores analógicos obtenidos por el muestreo en números.

En la práctica, la señal \(x(t) \) es generalmente de naturaleza eléctrica. El proceso de muestreo se realiza mediante un circuito electrónico de muestreo y retención o Sample and Hold (S&H) similar al de la figura 6.3. En este circuito, el interruptor \(S \) es activado por un impulso de control en cada instante de muestreo \(t_k \), cargando el condensador \(C \) a la tensión \(x(t_k) \). El condensador mantiene la tensión hasta que se vuelve a cerrar \(S \) en el instante \(t_{k+1} \). En la figura 6.4 se han representado las señales de entrada \(x(t) \) y de salida \(x_h(t) \) de este circuito. Si el intervalo de tiempo \((t_{k+1} - t_k) \) que transcurre entre cada dos muestras consecutivos es constante el muestreo se denomina periódico y el intervalo \(T = (t_{k+1} - t_k) \), período de muestreo. Otros tipos de muestreo son el de orden múltiple, el de periodo múltiple y el de período aleatorio. El más común es el muestreo periódico.

Puede observarse en la figura 6.4 que la señal de salida del circuito de muestreo y retención no es una función de tiempo discreto sino que es continua (constante) en cada período de muestreo, presentando discontinuidades en los instantes de muestreo.
Figura 6.4: Muestreo y retención de la señal

Figura 6.5: ADC de 3 bits de tipo flash
6.4. RECONSTRUCCIÓN DE LA SEÑAL MUESTREADA

El proceso de cuantificación es realizado por otro circuito electrónico, un convertidor analógico digital (ADC), que obtiene el código binario de cada uno de los valores $x_h(t)$ que el circuito S&H va presentando en su salida. Entre los ADC existentes podemos reseñar los tipos de aproximaciones sucesivas, integrador, contador y paralelo (flash). Por su simplicidad se ha representado en la figura 6.5 un ADC de 3 bits de tipo flash. Este convertidor efectúa la conversión del valor analógico de $x_h(t)$ presentado en su entrada a código Jhonson, que es convertido a binario natural por un circuito combinacional.

Este tipo de convertidores proporciona una gran velocidad de conversión, sólo limitada por los tiempos de los comparadores y del circuito lógico combinacional.

6.4. Reconstrucción de la señal muestreada

El problema complementario al de muestreo de una señal es el de la reconstrucción de la misma a partir de una secuencia de muestras. Consiste en obtener la señal original continua en el tiempo a partir de una secuencia de valores que corresponden a instantes discretos de tiempo. El método utilizado en la práctica consiste en realizar dos etapas: conversión digital-analógica y retención de la señal de salida del convertidor [2, sec. 11.4]. Un convertidor digital-analógico realiza la primera etapa mientras que la segunda es producida por un circuito de retención incorporado generalmente en el propio convertidor. Por este método se obtiene la señal x_r a partir de sus muestras $x^*(t)$ (figura 6.6). Debe observarse que la señal $x_r(t)$ no es la señal original $x(t)$ sino una señal obtenida a base de pulsos de altura $x(kT)$ y anchura T. No obstante, la señal original $x(t)$ puede obtenerse, en teoría exactamente, a partir de sus muestras siempre que sea una señal de banda limitada, es decir, que la máxima pulsación de los armónicos de su espectro sea inferior a una dada $\omega_{max} = B$.

6.4.1. Teorema del muestreo

Si una señal $x(t)$ de banda limitada ($\omega_{max} = B$) se muestrea con período T_s, tal que $\omega_s = 2\pi/T_s > 2B$, la señal $x(t)$ puede ser reconstruida completamente a partir de la señal muestreada $x^*(t)$.
6.4.2. Teorema de Shannon

Si una señal \(x(t) \) de banda limitada \((\omega_{\text{max}} = B) \) se muestrea con período \(T_s \), tal que \(\omega_s = 2\pi/T_s > 2B \), la señal original \(x(t) \) viene dada por la expresión

\[
x(t) = \sum_{k=-\infty}^{\infty} x(kT) \sin[\Omega_s(t-kT_s)/2] \frac{\omega_s(t-kT_s)/2}{\omega_s(t-kT_s)/2}
\]
(6.1)

La demostración de estos teoremas puede hallarse en [?, sec. 6.5]

6.4.3. El elemento de retención de orden cero (ZOH)

El filtro paso-bajo ideal realiza la operación expresada por (6.1). Sin embargo tal filtro no existe en la realidad por lo que la reconstrucción de la señal a partir de sus muestras debe hacerse en la práctica con filtros paso-bajo reales de orden cero, uno etc. El más sencillo es el circuito de retención de orden cero o Zero Order Hold (ZOH). Este circuito consta en esencia de un condensador que se mantiene cargado a la tensión de cada uno de los impulsos que constituyen las muestras \(x^*(t) \) (figura 6.3) Supongamos que, en \(t = 0 \), se aplica un impulso unitario a la entrada del ZOH. La salida es un pulso de duración \(T \) (figura 6.7). Las transformadas de Laplace las variables de entrada y salida son:

\[
\mathcal{L}[\delta(t)] = 1, \quad \mathcal{L}[1(t)-1(t-T)] = \frac{(1-e^{-sT})}{s}
\]

y por tanto, la función de transferencia del circuito de retención de orden cero es

\[
\text{ZOH}(s) = \frac{1-e^{-sT}}{s}
\]
(6.2)

6.4.4. La transformada estrella

La señal muestreada \(x^*(t) \) puede expresarse matemáticamente por medio de una suma de impulsos en los instantes de muestreo, de amplitud \(x(kT) \), de la forma

\[
x^*(t) = x(0)\delta(t) + x(T)\delta(t-T) + x(2T)\delta(t-2T) + \ldots
\]

\[
= \sum_{k=0}^{\infty} x(kT)\delta(t-kT)
\]
(6.3)

Su transformada de Laplace, a veces denominada transformada estrella [Ogata 87, sec. 3.5], es

\[
X^*(s) = x(0) + x(T)e^{-sT} + x(2T)e^{-2sT} + \ldots = \sum_{k=0}^{\infty} x(kT)e^{-skT}
\]
(6.4)
Podemos ver que $X^*(s)$ es una función periódica en el plano s (figura 6.8), con período $j\omega_s$. En efecto, si $s = 2\pi/T$ es la pulsación de muestreo y n es un número entero:

$$X^*(s + jn\omega_s) = \sum_{k=0}^{\infty} x(kT)e^{-kT(s+jn\omega_s)} = \sum_{k=0}^{\infty} x(kT)e^{-skT}e^{2\pi knj}$$

(6.5)

es decir que

$$X^*(s + jn\omega_s) = \sum_{k=0}^{\infty} x(kT)e^{-skT} = X^*(s)$$

(6.6)

La expresión matemática de la señal x_r puede hallarse teniendo en cuenta que se obtiene a partir de $x^*(t)$ y de la sucesión de pulsos obtenidos con el elemento ZOH. Por tanto,

$$X_r(s) = \text{ZOH}(s) X^*(s) = \frac{1 - e^{-sT}}{s} \sum_{k=0}^{\infty} x(kT)e^{-kTs}$$

(6.7)

6.5. La transformada z

Hemos visto que la transformada de Laplace de una señal muestreada $x^*(t)$ es (6.4):

$$\mathcal{L}[x^*(t)] = X^*(s) = \sum_{k=0}^{\infty} x(kT)e^{-kTs}$$

(6.8)

Definimos una nueva variable z mediante el cambio

$$e^{sT} = z$$
Con la nueva variable \(z \), la ecuación (6.4) se puede escribir

\[
X^*(s) = \sum_{k=0}^{\infty} x(kT)z^{-k} = X(z)
\]
(6.9)

La transformada \(z \) de una función \(x(t) \) se define como

\[
Z[x(kT)] = X^*(s)\big|_{sT=e^z} = \sum_{k=0}^{\infty} x(kT)z^{-k} = X(z)
\]
(6.10)

La transformada \(z \) de una función \(x(t) \) es la transformada de Laplace de la función \(x^*(t) (x(t) \) muestreada), haciendo \(e^{sT} = z \).

Así como la transformada de Laplace servía para modelizar los sistemas continuos, la transformada \(z \) hace el mismo papel en los de los sistemas discretos.

6.5.1. Propiedades y teoremas de la transformada \(z \)

Se describen a continuación algunas propiedades de la transformada \(z \). Por simplicidad se supone que el periodo de muestreo \(T \) es la unidad. Las demostraciones son inmediatas aplicando la definición de la transformada \(z \). Para un estudio más completo véase [Ogata 87, sec. 2.4].

1. Es una transformación lineal:

\[
Z[ax(k) + by(k)] = aZ[x(k)] + bZ[y(k)] = aX(z) + bY(z)
\]

2. Multiplicación por la constante \(a^k \):

\[
Z[a^kx(k)] = X\left(\frac{z}{a}\right)
\]

3. Traslación real:

\[
Z[x(k-n)] = z^{-n}X(z)
\]
\[
Z[x(k+n)] = z^n[X(z) - \sum_{k=0}^{n-1} x(k)z^{-k}]
\]

4. Traslación compleja:

\[
Z[e^{-ak}x(k)] = X(e^{a}z)
\]

5. Valor inicial:

\[
x(0) = \lim_{z \to \infty} X(z)
\]

6. Valor final:

\[
\lim_{k \to \infty} x(k) = \lim_{z \to 1} (1 - z^{-1})X(z)
\]

6.5.2. Transformadas de algunas funciones elementales

Aplicando la definición, las propiedades y los teoremas antes enunciados, pueden obtenerse las transformadas \(z \) de algunas funciones sencillas, de uso común, que se indican en la tabla 6.1.
6.5. LA TRANSFORMADA Z

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$F(s)$</th>
<th>$F(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(t)$</td>
<td>1</td>
<td>$\delta_K(0)$</td>
</tr>
<tr>
<td>$1(t)$</td>
<td>$\frac{1}{s}$</td>
<td>$\frac{z}{z-1}$</td>
</tr>
<tr>
<td>t</td>
<td>$\frac{1}{s^2}$</td>
<td>$\frac{T_z}{(z-1)^2}$</td>
</tr>
<tr>
<td>$\frac{1}{2} t^2$</td>
<td>$\frac{1}{s^3}$</td>
<td>$\frac{T_z^2 z (z+1)}{(z-1)^3}$</td>
</tr>
<tr>
<td>$\frac{1}{3!} t^3$</td>
<td>$\frac{1}{s^4}$</td>
<td>$\frac{T_z^3 z (z^2+1+4 z)}{(z-1)^4}$</td>
</tr>
<tr>
<td>$\frac{1}{n!} t^n$</td>
<td>$\frac{1}{s^n}$</td>
<td>$\lim_{n \to 0} \frac{(-1)^{n-1}}{n!(n-1)!} \frac{z}{z-e^{-at}}$</td>
</tr>
<tr>
<td>e^{-at}</td>
<td>$\frac{1}{s+a}$</td>
<td>$\frac{z}{z-e^{-at}}$</td>
</tr>
<tr>
<td>$\sin(w t)$</td>
<td>$\frac{w}{s^2+w^2}$</td>
<td>$\sin(wT) z$</td>
</tr>
<tr>
<td>$\cos(w t)$</td>
<td>$\frac{s}{s^2+w^2}$</td>
<td>$-2 z \cos(wT)+z^2+1$</td>
</tr>
<tr>
<td>$e^{-at} \cos(w t)$</td>
<td>$\frac{s-a}{(s+a)^2+w^2}$</td>
<td>$\frac{z (-\cos(wT)+z)}{-2 z e^{-aT} \cos(wT)+z^2+e^{-2aT}}$</td>
</tr>
<tr>
<td>$e^{-at} \sin(w t)$</td>
<td>$\frac{s+a}{(s+a)^2+w^2}$</td>
<td>$\frac{z (-\cos(wT)+z)}{-2 z e^{-aT} \cos(wT)+z^2+e^{-2aT}}$</td>
</tr>
<tr>
<td>$e^{-\sigma t} \sin(w t + \phi)$</td>
<td>$\frac{(s+\sigma) \sin(\phi)+w \cos(\phi)}{(s+\sigma)^2+w^2}$</td>
<td>$\frac{z (\cos(\phi) e^{(-\sigma T)} \sin(wT)+\sin(\phi) \cos(wT) e^{(-\sigma T)}+\sin(\phi) z)}{e^{(-2T \phi)}-2 z \cos(wT) e^{(-\sigma T)}+z^2}$</td>
</tr>
<tr>
<td>$e^{-\sigma t} \cos(w t + \phi)$</td>
<td>$\frac{(s+\sigma) \cos(\phi)-w \sin(\phi)}{(s+\sigma)^2+w^2}$</td>
<td>$\frac{z (\cos(\phi) e^{(-\sigma T)} \cos(wT)+\sin(\phi) \sin(wT) e^{(-\sigma T)}-\cos(\phi) z)}{e^{(-2T \phi)}+2 z \cos(wT) e^{(-\sigma T)}-z^2}$</td>
</tr>
</tbody>
</table>

Cuadro 6.1: Transformadas z de algunas funciones

6.5.3. Transformada z de diferencias finitas

Se define la diferencia primera hacia atrás, entre $x(k)$ y $x(k-1)$, como

$$
\Delta x(k) = x(k) - x(k-1)
$$

La transformada z de $\Delta x(k)$ es

$$
Z[\Delta x(k)] = Z[x(k) - x(k-1)] = Z[x(k)] - Z[x(k-1)] = X(z) - z^{-1} X(z) = (1 - z^{-1}) X(z)
$$

La diferencia segunda hacia atrás se define como la diferencia de la diferencia primera, es decir

$$
\Delta^2 x(k) = \Delta[\Delta x(k)] = \Delta[x(k) - x(k-1)] = \Delta[x(k)] - \Delta[x(k-1)]
$$

$$
= x(k) - x(k-1) - x(k-1) + x(k-2)
$$

$$
= x(k) - 2x(k-1) + x(k-2)
$$

Por tanto, la transformada z de la diferencia segunda es

$$
Z[\Delta^2 x(k)] = Z[x(k) - 2x(k-1) + x(k-2)]
$$

$$
= X(z) - 2z^{-1} X(z) + z^{-2} X(z)
$$

$$
= (1 - 2z^{-1} + z^{-2}) X(z)
$$
es decir

\[Z[\Delta^2 x(k)] = (1 - z^{-1})^2 X(z) \]

y del mismo modo pueden obtenerse

\[
\begin{align*}
Z[\Delta^3 x(k)] &= (1 - z^{-1})^3 X(z) \\
Z[\Delta^4 x(k)] &= (1 - z^{-1})^4 X(z) \\
&\vdots \\
Z[\Delta^n x(k)] &= (1 - z^{-1})^n X(z)
\end{align*}
\]

Se deduce aquí que la operación de tomar la diferencia hacia atrás de orden \(n\) de \(x(k)\) corresponde a multiplicar por \((1 - z^{-1})^n\) su transformada \(X(z)\).

La diferencia primera hacia delante entre \(x(k + 1)\) y \(x(k)\), se define como

\[\Delta x(k) = x(k + 1) - x(k) \]

La transformada \(z\) de esta diferencia es

\[
\begin{align*}
Z[\Delta x(k)] &= Z[x(k + 1) - x(k)] = Z[x(k + 1)] - Z[x(k)] \\
&= zX(z) - zx(0) - X(z) = (z - 1)X(z) - zx(0)
\end{align*}
\]

La diferencia segunda hacia adelante es

\[
\begin{align*}
\Delta^2 x(k) &= \Delta[x(k + 1) - x(k)] = \Delta x(k + 1) - \Delta x(k) \\
&= x(k + 2) - x(k + 1) - x(k + 1) + x(k) \\
&= x(k + 2) - 2x(k + 1) + x(k)
\end{align*}
\]

La transformada \(z\) de esta diferencia es

\[
\begin{align*}
Z[\Delta^2 x(k)] &= Z[x(k + 2) - 2x(k + 1) + x(k)] \\
&= zX(z) - z^2x(0) - zx(1) - 2[zX(z) - zx(0)] + X(z) \\
&= (z - 1)^2 X(z) - z(z - 1)x(0) - z[x(1) - x(0)]
\end{align*}
\]

y, por tanto,

\[Z[\Delta^2 x(k)] = (z - 1)^2 X(z) - z(z - 1)x(0) - z\Delta x(0) \]

siendo \(\Delta x(0) = x(1) - x(0)\).

Procediendo de así podemos obtener las expresiones de las diferencias hacia adelante tercera, cuarta etc. La transformada \(z\) de la diferencia hacia adelante de orden \(n\) resulta:

\[Z[\Delta^n x(k)] = (z - 1)^n X(z) - z \sum_{i=0}^{n-1} (z - 1)^{n-i+1} \Delta^i x(0) \]

6.6. Ecuaciones diferencia y funciones de transferencia en \(z\)

Una ecuación diferencia de orden \(n\) es una expresión de la forma:

\[a_n y(k) + a_{n-1} y(k - 1) + \ldots + a_0 y(k - n) = b_n x(k) + b_{n-1} x(k - 1) + \ldots + b_0 x(k - n) \quad (6.11) \]

en donde \(x\) e \(y\) son funciones de la variable discreta \(k\). Hallando la transformada \(z\) de ambos miembros de la expresión queda:

\[(a_n + a_{n-1} z^{-1} + \ldots + a_0 z^{-n}) Y(z) = (b_n + b_{n-1} z^{-1} + \ldots + b_0 z^{-n}) X(z) \]
6.7. OBTENCIÓN DE LA TRANSFORMADA Z INVERSA

La relación entre $Y(z)$ y $X(z)$ se denomina función de transferencia discreta $G(z)$:

$$G(z) = \frac{Y(z)}{X(z)} = \frac{b_n + b_{n-1}z^{-1} + \ldots + b_0z^{-n}}{a_n + a_{n-1}z^{-1} + \ldots + a_0z^{-n}}$$ (6.12)

o, multiplicando numerador y denominador por z^n,

$$G(z) = \frac{b_nz^n + b_{n-1}z^{n-1} + \ldots + b_0}{a_nz^n + a_{n-1}z^{n-1} + \ldots + a_0}$$

Puede apreciarse la semejanza de las ecuaciones (6.11) y (6.12) con ecuación diferencial

$$a_n y^{(n)} + \ldots + a_2 \dot{y} + a_1 y + a_0 y = b_m x^{(m)} + \ldots + b_2 \ddot{x} + b_1 \dot{x} + b_0 x$$

y la función de transferencia

$$G(s) = \frac{b_m s^m + b_{m-1}s^{m-1} + \ldots + b_1 s + b_0}{a_n s^n + a_{n-1}s^{n-1} + \ldots + a_1 s + a_0}$$

de un sistema continuo. La ecuación diferencial y la función de transferencia en s describen un sistema continuo, mientras que la ecuación diferencial y la función de transferencia en z describen uno discreto.

6.7. Obtención de la transformada z inversa

La transformada inversa Z^{-1} de una función $X(z)$ es la sucesión de valores $x(kT)$, $k = 0, 1, 2, \ldots$, tal que $Z[x(kT)] = X(z)$.

HAY que tener en cuenta que con Z^{-1} no se obtiene la función $x(t)$, puesto que en la sucesión obtenida $x(kT)$ no están incluidos los valores de $x(t)$ comprendidos entre cada dos valores consecutivos de k. A continuación se indican los métodos más usuales de hallar la transformada Z^{-1} [Ogata 87, sec. 2.5].

6.7.1. Método de integración compleja

La transformación inversa se obtiene, por integración en el campo complejo, resolviendo la integral (6.13) a lo largo de un contorno cerrado C del plano complejo z que encierre a todos los polos.

$$x(kT) = \frac{1}{2\pi j} \int_{C} z^{k-1}X(z)dz = \sum_{i=1}^{n} K_i$$ (6.13)

siendo K_1, K_2, \ldots, K_n, los residuos de la función $z^{k-1}X(z)$ en cada uno de sus polos z_1, z_2, \ldots, z_n.

6.7.2. Método de la división directa

La transformada inversa Z^{-1} de una función $X(z)$, expresada en forma de cociente entre los polinomios $N(z)$ y $D(z)$, puede hallarse efectuando la división larga de $N(Z)$ entre $D(z)$, obteniéndose una serie infinita de potencias en z^{-1}:

$$X(z) = \frac{N(z)}{D(z)} = a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots$$

La secuencia $x(kT)$ es, directamente, la formada por los coeficientes a_k:

$$x(kT) = a_k$$
6.7.3. Método de expansión en fracciones simples

Este método es similar al utilizado en la transformación inversa de Laplace. Consiste en descomponer la función $X(z)$, cuya antitransformada $x(kT)$ se desea hallar, en suma de fracciones simples, de la forma

$$
\frac{X(z)}{z} = \frac{k_1}{z-p_1} + \frac{k_2}{z-p_2} + \ldots + \frac{k_n}{z-p_n}
$$

en donde p_1, p_2, \ldots, p_n son los polos (simples) de $X(z)$. De aquí se obtiene inmediatamente Z^{-1}, ya que

$$
Z^{-1} \left(\frac{za_i}{z-p_i} \right) = a_ip_i^k
$$

Si $X(z)$ tiene polos múltiples se utilizan las mismas fórmulas de expansión en fracciones simples para el caso de raíces múltiples utilizadas en la obtención de la transformada inversa de Laplace.

6.8. Método de resolución numérica de la ecuación diferencia

Si $G(z)$ está expresada en forma de cociente de polinomios en z, con coeficientes numéricos, la antitransformada $y(k)$ puede hallarse numéricamente mediante computador, resolviendo una ecuación diferencia. Para simplificar las expresiones suponemos una $G(z)$ con numerador de segundo orden el denominador de tercero, de la forma

$$
G(z) = \frac{b_2z^2 + b_1z + b_0}{z^3 + a_2z^2 + a_1z + a_0}
$$

Sea $X(z)$ la función de entrada de $G(z)$ e $Y(z)$ la de salida. Entonces,

$$
Y(z) = \frac{b_2z^2 + b_1z + b_0}{z^3 + a_2z^2 + a_1z + a_0} X(z)
$$

Si la entrada $x(kT)$ es la función δ de Kroneker,

$$
x(k) = 1, \quad k = 0x(k) = 0, \quad k > 0
$$

su transformada es $X(z) = 1$ y, por tanto, $Y(z) = G(z)$. Pongamos la función de transferencia (6.14) en forma de ecuación diferencia:

$$
y(k+3) + a_2y(k+2) + a_1y(k+1) + a_0y(k) = b_2x(k+2) + b_1x(k+1) + b_0x(k)
$$

o bien

$$
y(k+3) = b_2x(k+2) + b_1x(k+1) + b_0x(k) - a_2y(k+2) - a_1y(k+1) - a_0y(k)
$$

Demos valores a k. Para $k = -3$ obtenemos:

$$
y(0) = b_2x(-1) + b_1x(-2) + b_0x(-3) - a_2y(-1) - a_1y(-2) - a_0y(-3)
$$

Pero $x(-1) = x(-2) = x(-3) = y(-1) = y(-2) = y(-3) = 0$, luego $y(0) = 0$. Para $k = -2$:

$$
y(1) = b_2x(0) + b_1x(-1) + b_0x(-2) - a_2y(0) - a_1y(-1) - a_0y(-2) = b_2x(0) = b_2
$$

Para $k = -1$:

$$
y(2) = b_2x(1) + b_1x(0) + b_0x(-1) - a_2y(1) - a_1y(0) - a_0y(-1) = b_1 - a_2b_2
$$
6.9. MODELOS MATEMÁTICOS DE LOS SISTEMAS DE TIEMPO DISCRETO

Los valores $y(0), y(1), y(2)$ obtenidos hasta aquí son las condiciones iniciales que debe tener la ecuación diferencia (6.15) para que la función $Y(z)$ obtenida al hallar su transformada z sea la propuesta. Por tanto, para hallar la transformada inversa Z^{-1} de la función $Y(z)$, se resuelve la ecuación diferencia (6.15) con condiciones iniciales $y(0), y(1), y(2)$ halladas. Para ello, se van dando a k los valores 0, 1, 2, ..., obteniéndose los valores de $y(k)$ correspondientes a $Z^{-1}[X(z)]$.

![Figura 6.9: Sistema SISO de tiempo discreto](image)

Este proceso puede implementarse en un sencillo programa de ordenador que resuelva la ecuación diferencia (6.15) con los datos y condiciones iniciales indicadas. Si los polinomios que forman $Y(z)$ fueran de orden n, la ecuación diferencia (6.15) sería de orden n, procediéndose de modo similar.

6.9. Modelos matemáticos de los sistemas de tiempo discreto

Sabemos que un sistema de tiempo discreto es aquel cuyas variables son funciones de la variable discreta tiempo. En la figura 6.9 se ha representado el diagrama de bloques de un sistema SISO de tiempo discreto. Del mismo modo que un sistema lineal y continuo en el tiempo es aquel cuyo modelo matemático es una ecuación diferencial lineal, de orden n, de coeficientes constantes, un sistema lineal de tiempo discreto es aquel cuyo modelo matemático es una ecuación diferencial lineal, de orden n, de la forma indicada por (6.11):

$$a_n y(k) + a_{n-1} y(k-1) + \ldots + a_0 y(k-n) = b_n x(k) + b_{n-1} x(k-1) + \ldots + b_0 x(k-n)$$

Esta ecuación relaciona los valores de la salida discreta $y(k)$ con los valores de la entrada discreta $x(k)$, en los instantes $k, (k-1), \ldots, (k-n)$. La relación entre $Y(z)$, transformada z de la salida $y(k)$, y $X(z)$, transformada z de la entrada $X(k)$, es la función de transferencia del sistema discreto: $Y(z) = G(z)X(z)$

6.9.1. Filtros digitales

La implementación de una ecuación diferencia mediante un programa de ordenador es un filtro digital. El computador genera los valores de la secuencia $y(k)$ dados por la ecuación diferencia (6.11). Un filtro digital es, por naturaleza, un sistema discreto ya que las variables de entrada y de salida son discretas (secuencias de números) y la relación entre ambas es una ecuación diferencia.
6.9.2. Sistemas continuos muestreados

La entrada a un sistema continuo de función de transferencia \(G(s) \) es una señal \(x^*(t) \) muestreada con periodo \(T \), dada por (6.3):

\[
x^*(t) = \sum_{k=0}^{\infty} x(kT)\delta(t - kT)
\]

siendo \(x(t) \) una señal de tiempo continuo. A su vez, la salida \(y(t) \) se vuelve a muestrear, con igual periodo, obteniéndose \(y^*(t) \). Deseamos hallar la relación entre la salida muestreada \(Y^*(s) \) y la entrada muestreada \(X^*(s) \) (figura 6.10). La transformada de Laplace de la salida \(y(t) \) es

\[
Y(s) = X^*(s)G(s)
\]
y, por tanto,

\[
y(t) = \mathcal{L}^{-1}[Y(s)] = \mathcal{L}^{-1}[G(s)X^*(s)]
\]

Aplicando el teorema de convolución,

\[
y(t) = \int_0^t g(t - \tau)x^*(\tau)d\tau
\]

Sustituyendo el valor de \(x^*(t) \) dado por (6.3) resulta

\[
y(t) = \int_0^t g(t - \tau)\sum_{k=0}^{\infty} x(kT)\delta(\tau - kT)d\tau
\]

\[
= \sum_{k=0}^{\infty} \int_0^t g(t - \tau)x(kT)\delta(\tau - kT)d\tau
\]

\[
= \sum_{k=0}^{\infty} g(t - kT)x(kT)
\]

que es una señal continua. La salida \(y(t) \) se muestrea, dando \(y^*(t) \)

\[
y^*(t) = \sum_{n=0}^{\infty} \left[\sum_{k=0}^{\infty} g(nT - kT)x(kT) \right] \delta(t - nT)
\]
y, por tanto,

\[
Y^*(s) = Y(z) = \sum_{n=0}^{\infty} \left[\sum_{k=0}^{\infty} g(nT - kT)x(kT) \right] z^{-n}
\]
ahora, haciendo \(m = n - k \) queda

\[
Y(z) = Z[y(t)] = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} g(mT)x(kT)z^{-(k+m)} = \sum_{m=0}^{\infty} g(mT)z^{-m} \sum_{k=0}^{\infty} x(kT)z^{-k} = G(z)X(z)
\]

(6.17)

En consecuencia,

\[
Y^*(s) = [X^*(s)G(s)]^* = G^*(s)X^*(s)
\]

(6.18)

es decir

\[
G^*(s) = \frac{Y^*(s)}{X^*(s)}
\]

o bien

\[
G(z) = \frac{Y(z)}{X(z)}
\]

Este resultado dice que dado un sistema de tiempo continuo, definido por su función de transferencia \(G(s) \), con entrada \(x^*(t) \) obtenida mediante muestreo de periodo \(T \) de una señal continua \(x(t) \), y con salida continua \(y(t) \) que se muestrea con igual período \(T \) para obtener \(y^*(t) \) (figura 6.10), se comporta como un sistema discreto con función de transferencia \(G(z) \), siendo \(G(z) \) la transformada \(z \) de la función ponderatriz \(g(t) \) del sistema.

6.9.3. Modelo de estado de tiempo discreto

El acercamiento al modelo de estado de tiempo discreto puede hacerse de diferentes maneras. Una de ellas, que exponemos a continuación, consiste en convertir el modelo de estado de tiempo continuo, definido por (6.19), en discreto. El procedimiento que seguiremos consiste en discretizar el tiempo, es decir, dividirlo en intervalos finitos, y hallar la solución del sistema de ecuaciones diferenciales (6.19) en cada intervalo [Ogata 87, cap2]. El problema de hallar la solución del sistema de ecuaciones diferenciales lineales de coeficientes constantes

\[
\dot{x} = Ax + Bu \\
y = Cx + Du
\]

(6.19)
es un resultado conocido de la teoría de ecuaciones diferenciales (consúltese por ejemplo [?]):

\[
x(t) = e^{A(t-t_0)}x(0) + \int_{t_0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau
\]

(6.20)

La matriz

\[
\Phi(t) = e^{At}
\]

(6.21)

se denomina matriz de transición. Por ser la función exponencial de la matriz \(At \), está definida mediante la serie

\[
\Phi(t) = e^{At} = \sum_{k=0}^{\infty} \frac{(At)^k}{k!}
\]

(6.22)
y existen varios procedimientos para calcularla. Utilizando esta matriz, la ecuación (6.20) se puede escribir

\[
x = \Phi(t-t_0)x(0) + \int_{t_0}^{t} \Phi(t-\tau)Bu(\tau)d\tau
\]

(6.23)
Supongamos que la entrada al sistema descrito por descrito por (6.19) es un conjunto de señales denotadas por \(u(t) \) y que cada una de estas señales es del tipo de la señal \(x_h(t) \) representada en la figura (6.4). Se trata pues de señales que proceden, posiblemente, de un proceso previo de muestreo y retención, con período \(T \), de otras señales de tiempo contínuo. Entonces se cumple

\[
u(t) = u(kT), \quad kT \leq t < (k + 1)T, \quad k = 0, 1, 2, \ldots
\]
y que el valor de las señales se mantiene constante en cada intervalo \(T \). Supongamos ahora que las señales de salida que forman \(y(t) \) se muestren con el mismo período \(T \) pero con un retraso \(T_d \), tal que \(0 < T_d < T \), respecto de la entrada \(u(k) \) (figura 6.11), de modo que los instantes de muestreo de las señales de salida son \(t = kT + T_d \), para \(k = 0, 1, 2, \ldots \). Denotemos por \(u_k \) e \(y_k \) las secuencias de entrada y salida obtenidas. Sus valores son

\[
u_k = u(kT), \quad y_k = y(kT + T_d)
\]

La fórmula (6.20) nos permite obtener la solución de la ecuación diferencial del vector de estado (6.19) en un intervalo cualquiera. Consideremos el intervalo \([t_k, t_{k+1}]\). En el mismo, las señales de entrada \(u(t) \) son constantes y su valor es \(u_k \). Sea \(x_k \) el valor de las variables de estado en el instante inicial \(t_k \). Entonces,

\[
x(t_{k+1}) = e^{A(t_{k+1} - t_k)}x(t_k) + \int_{t_k}^{t_{k+1}} e^{A(t_k - \tau)}Bu_k d\tau
\]

o bien, sustituyendo \(t_k \) por \(kT \) y \(t_{k+1} \) por \(kT + T \),

\[
x(kT + T) = e^{AT}x(kT) + \int_0^T e^{A\tau}Bu_k d\tau
\]

La salida, obtenida a partir de (6.19) y (6.25) es

\[
y(k) = y(kT + T_d) = Ce^{AT_d}x(kT) + C \int_0^{T_d} e^{AT}Bu(kT) + Du(kT)
\]

Si hacemos

\[
\hat{A} = e^{AT}, \quad \hat{B} = \int_0^T e^{A\tau}Bu k \mathrm{d}\tau
\]

\[
\hat{C} = Ce^{AT_d}, \quad \hat{D} = C \int_0^{T_d} e^{AT}Bu + D
\]
el sistema discreto obtenido queda descrito por las ecuaciones

\[
\begin{align*}
x_{k+1} &= \hat{A}x_k + \hat{B}u_k \\
y_k &= \hat{C}x_k + \hat{D}u_k
\end{align*}
\] (6.27)

Estas ecuaciones se llaman *ecuaciones de estado de tiempo discreto* y constituyen el modelo de estado, o interno, de tiempo discreto. Obsérvese que la matriz \hat{A} es la que hemos denominado matriz de transición $\Phi(t)$ en (6.22), para $t = T$. Las matrices \hat{A}, \hat{B}, \hat{C} y \hat{D} pueden hallarse fácilmente por cálculo numérico a partir de la serie (6.22).
Capítulo 7

Sistemas controlados por computador

Los sistemas controlados por computador han cobrado creciente importancia en el mundo industrial durante las últimas décadas. El control digital sustituye con ventaja al analógico incluso hasta en las más modestas aplicaciones [?].

En los sistemas de control por computador (figura 7.1) el controlador digital (\(\mu P \)) recibe la secuencia de valores \(e(kT) = e^*(t) \), muestreada de la señal continua \(e(t) \) y cuantificada por un CAD, y realiza con ellos el algoritmo de control definido por la función \(D(z) \), obteniendo la secuencia \(x^*(t) = x(kT) \). Un CDA conectado a un elemento ZOH genera la señal continua \(x_r(t) \) que se aplica a la planta del sistema. En este tipo de sistemas hay que tener en cuenta la función de transferencia del elemento de retención ZOH tal como se ha representado en la figura 7.1. Si la salida \(y(t) \) se muestrea, podemos considerar al conjunto formado por el elemento ZOH y la planta como un sistema continuo muestreado. Estos dos bloques pueden asociarse formando en

![Figura 7.1: Sistema de control por computador](image1)

![Figura 7.2: Bloques ZOH y planta](image2)
uno cuya función de transferencia sea

\[G_1(s) = \frac{1 - e^{-sT}}{s} G(s) \]

La relación entre las transformadas \(z \) de las secuencias de salida y de entrada será

\[G_1(z) = \frac{Y(z)}{X(z)} \]

siendo

\[G_1(z) = G_1^*(s)|_{z=e^{sT}} = \left[\frac{1 - e^{-sT}}{s} G(s) \right]^*|_{z=e^{sT}} = (1 - z^{-1}) \left[\frac{G(s)}{s} \right]^*|_{z=e^{sT}} \]

es decir

\[G_1(z) = (1 - z^{-1})Z \left[\frac{G(s)}{s} \right] \]

La función de transferencia total del sistema en lazo cerrado se obtiene ahora con facilidad por las reglas de simplificación de los diagramas de bloques.

\[T(z) = \frac{Y(z)}{U(z)} = \frac{D(z)G_1(z)}{1 + D(z)G_1(z)} \]

La función de transferencia \(T(z) \) sirve para realizar la simulación del sistema completo.

7.1. Estabilidad en el plano \(z \)

La estabilidad absoluta y relativa de un sistema lineal de tiempo invariante está determinada por la posición de sus polos en el plano \(s \): si están ubicados en el semiplano de la izquierda, el sistema es estable.

La transformada \(z \) es una transformación conforme del plano \(s \) en el plano \(z \) dada por la expresión:

\[z = e^{sT} \]

Mediante esta transformación la recta \(s = j\omega \) (eje imaginario) del plano \(s \) se transforma en un círculo de radio unidad en el plano \(z \). En efecto, aplicando la transformación queda \(z = e^{j\omega T} \) que es la ecuación de un círculo de radio unidad (figura 7.3) en el plano \(z \). La condición de estabilidad en el plano \(s \) es que la parte real de todos y cada uno de los polos sea negativa:

\[\sigma_i < 0 \quad i = 1, \ldots, n \]

siendo \(\sigma_i \) la parte real de cada uno de los polos. En el plano \(z \), esta condición se transforma ya que, si \(\sigma < 0 \),

\[z = e^{sT} = e^{(\sigma+j\omega)T} = e^{\sigma T} e^{j\omega T} \]

implica

\[|z| = e^{\sigma T} < 1 \]

Por tanto, la condición de estabilidad en el plano \(z \) es que los polos del sistema han de quedar dentro de la circunferencia de radio unidad y de centro el origen del plano \(z \).
7.1. ESTABILIDAD EN EL PLANO Z

Figura 7.3: Transformación $z = e^{sT}$

Figura 7.4: Sistema con controlador analógico $C(s)$
7.2. Diseño del controlador digital

En los sistemas controlados por computador el objetivo del diseño es hallar los algoritmos que debe efectuar el computador para que el funcionamiento del sistema sea el adecuado. Existen numerosos métodos de diseño basados tanto en la teoría clásica de funciones de transferencia como en la teoría moderna de variables de estado y control óptimo.

Los procedimientos que a continuación se describen se basan en sustitución de un controlador analógico dado por otro digital, tal que su funcionamiento entrada-salida sea similar. En la figura 7.4 se ha representado un sistema con control analógico $C(s)$. El controlador analógico $C(s)$ se desea sustituir por otro digital $D(z)$ obteniéndose el diagrama de bloques de la figura 7.5. Para hacer que el funcionamiento entrada-salida del controlador digital $D(z)$ sea lo más parecido posible al del analógico $C(s)$ al que sustituye existen varios procedimientos, de los que cuales citamos algunos a continuación [Ogata 87, sec. 4.2].

7.2.1. Equivalencia al muestreo y retención.

Este método consiste en hacer que el funcionamiento en modo muestreado con retención de orden cero (ZOH) del controlador analógico sea equivalente al del controlador digital por el que va a ser sustituido (7.5). Para que el funcionamiento entrada-salida de ambos controladores sea equivalente, ha de ser igual la relación $X^*(s)/E^*(s)$ entre la salida muestreada y la entrada muestreada. Es decir que

$$D(z) = \left[\frac{1 - e^{-sT}C(s)}{s} \right]^*_{z = e^{-sT}} = (1 - z^{-1})Z[C(s)]$$

7.2.2. Invariancia al impulso

Al aplicar un impulso unitario a la entrada de ambos controladores, la salida del controlador digital ha de ser igual a la salida muestreada del controlador analógico. En este caso no existe retención de la señal de entrada en el controlador analógico (7.6). Puesto que la entrada es un único impulso, la entrada $e(t)$ y la entrada muestreada $e^*(t)$ son idénticas. La respuesta al impulso es, para el primer controlador

$$X(s) = E^*(s)C(s)$$
7.2. DISEÑO DEL CONTROLADOR DIGITAL

Figura 7.6: Sustitución por invariancia al impulso

mientras que su respuesta muestreada es

\[X^*(s) = [E^*(s)C(s)]^* = E^*(s)C^*(s) \]

Por tanto, para que la salida del controlador digital sea también \(X^*(s) \), ha de verificarse que

\[X(z) = E(z)D(z) \]

de donde se deduce que

\[D(z) = C^*(s)|_{z=e^{sT}} = Z[C(s)] \]

7.2.3. Invariancia al escalón

Al aplicar un escalón unitario a la entrada de ambos controladores, la salida del controlador digital ha de ser igual a la salida muestreada del controlador analógico (7.7). En este caso la respuesta al escalón del controlador analógico es

Figura 7.7: Sustitución por invariancia al escalón

\[X(s) = E(s)C(s) = \frac{1}{s}C(s) \]
La salida muestreada del controlador analógico será

\[X^*(s) = \left[\frac{1}{s} C(s) \right]^* \]

Como la salida del controlador digital ha de ser también \(X^*(s) \), se deduce que

\[X(z) = E(z) D(z) = \left[\frac{1}{C(s)} \right]^* = Z[\frac{1}{s} C(s)] \] (7.1)

pero la transformada \(z \) de la entrada escalón unitario es

\[Z[e(t)] = \frac{z}{z-1} \]

Sustituyendo en (7.1) queda

\[\frac{z}{z-1} D(z) = Z[\frac{1}{s} C(s)] \]

y la función de transferencia del controlador ha de ser

\[D(z) = \frac{z-1}{z} Z[\frac{1}{s} C(s)] \]

Obsérvese que se obtiene el mismo resultado que en método de equivalencia al muestreo y retención.

7.2.4. Integración numérica

Este método consiste en implementar un algoritmo en el controlador que realice la integración numérica de la ecuación integro diferencial del controlador analógico. Por ejemplo, para un controlador de tipo PID, con función de transferencia

\[C(s) = \frac{X(s)}{E(s)} = K_p + \frac{K_i}{s} + sK_d \]

la salida se relaciona en el dominio del tiempo con la entrada por la ecuación

\[x(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_d \frac{de(t)}{dt} \] (7.2)

esta ecuación se puede resolver numéricamente a través diferentes algoritmos, basados en utilizar diferencias hacia adelante o diferencias hacia atrás, regla trapezoidal para integrales, etc. Una de las posibles ecuaciones diferencia que resuelven la ecuación (7.2) es

\[x(k) = \left(K_p + \frac{K_i T}{2} + \frac{K_d}{T} \right) e(k) - \left(K_p - \frac{K_i T}{2} + \frac{2K_d}{T} \right) e(k-1) + \frac{K_d}{2} e(k-2) \]

7.2.5. Coincidencia de polos y ceros

Los polos y ceros del controlador digital se hacen coincidir con los polos y ceros del controlador analógico mapeados en el plano \(z \) mediante la transformación \(z = e^{sT} \).
7.2. DISEÑO DEL CONTROLADOR DIGITAL

7.2.6. Transformación bilineal

La transformación

\[s = \frac{2}{T} \frac{z - 1}{z + 1} \]

se denomina transformación bilineal y hace corresponder el semiplano de la izquierda del plano complejo \(s \) con el interior del círculo de radio unidad en el plano complejo \(z \). Se obtiene al utilizar la regla trapezoidal en la integración numérica de las ecuaciones diferenciales. El controlador digital obtenido por este método es estable si su homólogo analógico también lo es.

7.2.7. Métodos modernos de diseño.

En los sistemas actuales de control multivariable (MIMO) se utilizan técnicas de Diseño Asistido por Ordenador de Sistemas de Control, CACSD (Computer-Aided Control System Design), que facilitan el trabajo a los ingenieros de diseño de sistemas. Se han desarrollado paquetes de Software de Automática y Control que integran potentes herramientas para el análisis, simulación y diseño de sistemas. De algunos de estos programas existen versiones para ordenadores personales como, por ejemplo, MATLAB, CC, MATRIX, CTRL-C, SIMNON, etc [Maltab, Control Toolbox].

En el aspecto del diseño se utilizan, además de los métodos clásicos del lugar de las raíces y los métodos gráficos de respuesta de frecuencia, los métodos modernos, que permiten optimizar el diseño en función de las especificaciones requeridas (control óptimo), realizar controladores que se adaptan de forma automática al proceso que controlan (autosintonizados) etc., y son, por tanto, de gran utilidad.
Bibliografía

